Hopf Bifurcation Analysis and Control of a Ratio-Dependent Predator–Prey Model of Holling IV Type with Time Delayed Feedback

F. Sun, Yiping Lin, Jufeng Wang
{"title":"Hopf Bifurcation Analysis and Control of a Ratio-Dependent Predator–Prey Model of Holling IV Type with Time Delayed Feedback","authors":"F. Sun, Yiping Lin, Jufeng Wang","doi":"10.1109/IWCFTA.2010.78","DOIUrl":null,"url":null,"abstract":"In present paper, the time-delayed feedback is coupled with a ratio-dependent predator–prey model of Holling ??? type. This predator-prey system can be seen as a human-controlled biological system. Regarding the delay as parameter, we investigate the existence of local Hopf bifurcations. By using the Hassard method and the center manifold argument, we derive the explicit formulas determining the stability, direction and other properties of bifurcation. Finally, we give a numerical simulation, which indicates that when the delay passes through certain critical values, the positive equilibria is converted into a stable steady state. It means that we can control the stability of the equilibria by man-made control of the number of the predator with certain age.","PeriodicalId":157339,"journal":{"name":"2010 International Workshop on Chaos-Fractal Theories and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Chaos-Fractal Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2010.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In present paper, the time-delayed feedback is coupled with a ratio-dependent predator–prey model of Holling ??? type. This predator-prey system can be seen as a human-controlled biological system. Regarding the delay as parameter, we investigate the existence of local Hopf bifurcations. By using the Hassard method and the center manifold argument, we derive the explicit formulas determining the stability, direction and other properties of bifurcation. Finally, we give a numerical simulation, which indicates that when the delay passes through certain critical values, the positive equilibria is converted into a stable steady state. It means that we can control the stability of the equilibria by man-made control of the number of the predator with certain age.
时滞反馈Holling IV型比例依赖捕食-食饵模型的Hopf分岔分析与控制
本文将时滞反馈与比例依赖的Holling ??类型。这种捕食者-猎物系统可以看作是人类控制的生物系统。以时滞为参数,研究了局部Hopf分岔的存在性。利用Hassard方法和中心流形论证,导出了确定分岔稳定性、方向和其他性质的显式公式。最后给出了一个数值模拟,结果表明,当时滞超过一定的临界值时,正平衡态转化为稳定的稳态。这意味着我们可以通过人为控制一定年龄的捕食者的数量来控制平衡的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信