A Framework to Answer Questions of Opinion Type

Xiangdong Su, Guanglai Gao, Yu Tian
{"title":"A Framework to Answer Questions of Opinion Type","authors":"Xiangdong Su, Guanglai Gao, Yu Tian","doi":"10.1109/WISA.2010.22","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a framework to answer questions of opinion type. The data source is the web pages returned from the search engine. By using Bayes Classifier, the main texts on the pages are classified into three categories at sentence level: positive review, negative review and neutral review. K-means method is used to cluster the sentences of positive review and negative review respectively. The final answers are extracted from the sentence groups after clustering and presented in the form of quaternion. We design a system to test this framework. The experimental results show that it is effective.","PeriodicalId":122827,"journal":{"name":"2010 Seventh Web Information Systems and Applications Conference","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Seventh Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2010.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we propose a framework to answer questions of opinion type. The data source is the web pages returned from the search engine. By using Bayes Classifier, the main texts on the pages are classified into three categories at sentence level: positive review, negative review and neutral review. K-means method is used to cluster the sentences of positive review and negative review respectively. The final answers are extracted from the sentence groups after clustering and presented in the form of quaternion. We design a system to test this framework. The experimental results show that it is effective.
回答意见类问题的框架
在本文中,我们提出了一个回答意见类型问题的框架。数据源是搜索引擎返回的网页。通过贝叶斯分类器,将页面上的主要文本在句子层面上分为三类:正面评论、负面评论和中性评论。K-means方法分别对正面评价和负面评价的句子进行聚类。聚类后从句子组中提取最终答案,并以四元数的形式呈现。我们设计了一个系统来测试这个框架。实验结果表明,该方法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信