Local Feature Based Online Mode Detection with Recurrent Neural Networks

S. Otte, D. Krechel, M. Liwicki, A. Dengel
{"title":"Local Feature Based Online Mode Detection with Recurrent Neural Networks","authors":"S. Otte, D. Krechel, M. Liwicki, A. Dengel","doi":"10.1109/ICFHR.2012.229","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel approach for online mode detection, where the task is to classify ink traces into several categories. In contrast to previous approaches working on global features, we introduce a system completely relying on local features. For classification, standard recurrent neural networks (RNNs) and the recently introduced long short-term memory (LSTM) networks are used. Experiments are performed on the publicly available IAMonDo-database which serves as a benchmark data set for several researches. In the experiments we investigate several RNN structures and classification sub-tasks of different complexities. The final recognition rate on the complete test set is 98.47% in average, which is significantly higher than the 97% achieved with an MCS in previous work. Further interesting results on different subsets are also reported in this paper.","PeriodicalId":291062,"journal":{"name":"2012 International Conference on Frontiers in Handwriting Recognition","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2012.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 38

Abstract

In this paper we propose a novel approach for online mode detection, where the task is to classify ink traces into several categories. In contrast to previous approaches working on global features, we introduce a system completely relying on local features. For classification, standard recurrent neural networks (RNNs) and the recently introduced long short-term memory (LSTM) networks are used. Experiments are performed on the publicly available IAMonDo-database which serves as a benchmark data set for several researches. In the experiments we investigate several RNN structures and classification sub-tasks of different complexities. The final recognition rate on the complete test set is 98.47% in average, which is significantly higher than the 97% achieved with an MCS in previous work. Further interesting results on different subsets are also reported in this paper.
基于局部特征的递归神经网络在线模式检测
在本文中,我们提出了一种新的在线模式检测方法,其任务是将油墨痕迹分为几类。与以前处理全局特征的方法不同,我们引入了一个完全依赖于局部特征的系统。对于分类,使用标准循环神经网络(rnn)和最近引入的长短期记忆(LSTM)网络。实验是在公开可用的iamondo数据库上进行的,该数据库作为几项研究的基准数据集。在实验中,我们研究了不同复杂度的RNN结构和分类子任务。最终在完整测试集上的平均识别率为98.47%,明显高于MCS在之前工作中所取得的97%的识别率。本文还报道了在不同子集上进一步有趣的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信