Decision template fusion for classifying Indian edible oils using singular value decomposition on NIR spectrometry data

Shiladitya Saha, S. Saha
{"title":"Decision template fusion for classifying Indian edible oils using singular value decomposition on NIR spectrometry data","authors":"Shiladitya Saha, S. Saha","doi":"10.1109/ICRCICN.2016.7813661","DOIUrl":null,"url":null,"abstract":"Edible oil is dominant part of human diet and available in various forms in the market. On the other hand, quality assurance in food industry is nowadays an important parameter for public concern and awareness. In this context, this paper presents a discrimination methodology of edible oils such as mustard, olive, rice bran, sunflower and soybean oils using a portable non-destructive near infrared spectrometer (NIR). Two tier approaches are taken for oil discrimination purpose. First is the significant features extraction from each oil's spectrum using singular value decomposition technique and the second one is the classification of oils using multiple classifier combination approach using decision template fusion technique. Support vector machine and multilayer perceptron classifier are also applied here. Experimental results clearly indicate the efficacy of decision template fusion technique with combination of support vector machine and multilayer perceptron classifier as compared to combination of same type of classifier.","PeriodicalId":254393,"journal":{"name":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2016.7813661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Edible oil is dominant part of human diet and available in various forms in the market. On the other hand, quality assurance in food industry is nowadays an important parameter for public concern and awareness. In this context, this paper presents a discrimination methodology of edible oils such as mustard, olive, rice bran, sunflower and soybean oils using a portable non-destructive near infrared spectrometer (NIR). Two tier approaches are taken for oil discrimination purpose. First is the significant features extraction from each oil's spectrum using singular value decomposition technique and the second one is the classification of oils using multiple classifier combination approach using decision template fusion technique. Support vector machine and multilayer perceptron classifier are also applied here. Experimental results clearly indicate the efficacy of decision template fusion technique with combination of support vector machine and multilayer perceptron classifier as compared to combination of same type of classifier.
基于近红外光谱数据奇异值分解的印度食用油分类决策模板融合
食用油是人类饮食的主要组成部分,在市场上以各种形式存在。另一方面,食品工业的质量保证是当今公众关注和意识的一个重要参数。本文介绍了一种便携式无损近红外光谱仪(NIR)对芥菜油、橄榄油、米糠油、葵花籽油和大豆油的鉴别方法。油品鉴别采用两层方法。首先利用奇异值分解技术提取各油类光谱的显著特征,然后利用决策模板融合技术,利用多分类器组合方法对油类进行分类。支持向量机和多层感知器分类器在此也有应用。实验结果清楚地表明,支持向量机与多层感知器分类器相结合的决策模板融合技术比同类分类器相结合的效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信