Identification of Inverted Pendulum System Using Frequency Domain Maximum Likelihood Estimation

Si-Ting Zou, Qing Sun, Dangdang Du
{"title":"Identification of Inverted Pendulum System Using Frequency Domain Maximum Likelihood Estimation","authors":"Si-Ting Zou, Qing Sun, Dangdang Du","doi":"10.1109/ICMLC51923.2020.9469529","DOIUrl":null,"url":null,"abstract":"This paper explores the method of establishing dynamic model of inverted pendulum based on system identification. The maximum likelihood method in frequency domain is innovatively applied to identify the model parameters of the inverted pendulum system(IPS). The frequency domain maximum likelihood (ML) method is used to resolve the output error(OE) model with transient term for the system transfer function between the output state variables and the input variable. Finally, the parameters are identified using the frequency domain ML method and compared with the time-domain weighted least square method. Under the condition with only measured data, the experiment of a single inverted pendulum system with random time-varying control signal as excitation signal is designed. The numerical results show that the frequency domain ML method is effective in the identification of the inverted pendulum system.","PeriodicalId":170815,"journal":{"name":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Learning and Cybernetics (ICMLC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC51923.2020.9469529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper explores the method of establishing dynamic model of inverted pendulum based on system identification. The maximum likelihood method in frequency domain is innovatively applied to identify the model parameters of the inverted pendulum system(IPS). The frequency domain maximum likelihood (ML) method is used to resolve the output error(OE) model with transient term for the system transfer function between the output state variables and the input variable. Finally, the parameters are identified using the frequency domain ML method and compared with the time-domain weighted least square method. Under the condition with only measured data, the experiment of a single inverted pendulum system with random time-varying control signal as excitation signal is designed. The numerical results show that the frequency domain ML method is effective in the identification of the inverted pendulum system.
基于频域极大似然估计的倒立摆系统辨识
探讨了基于系统辨识的倒立摆动力学模型的建立方法。创新性地将频域最大似然法应用于倒立摆系统的模型参数辨识。采用频域最大似然方法求解了系统输出状态变量与输入变量之间传递函数具有暂态项的输出误差模型。最后,采用频域ML方法进行参数辨识,并与时域加权最小二乘法进行比较。在只有实测数据的条件下,设计了以随机时变控制信号作为激励信号的单倒立摆系统实验。数值结果表明,频域ML方法对倒立摆系统的辨识是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信