Methods for Long-Term GNSS Clock Offset Prediction

Jaakko Pihlajasalo, H. Leppäkoski, Saara Kuismanen, S. Ali-Löytty, R. Piché
{"title":"Methods for Long-Term GNSS Clock Offset Prediction","authors":"Jaakko Pihlajasalo, H. Leppäkoski, Saara Kuismanen, S. Ali-Löytty, R. Piché","doi":"10.1109/ICL-GNSS.2019.8752725","DOIUrl":null,"url":null,"abstract":"Clock offset predictions along with satellite orbit predictions are used in self-assisted GNSS to reduce the Time-to-First-Fix of a satellite positioning device. This paper compares three methods for predicting GNSS satellite clock offsets: polynomial regression, Kalman filtering and support vector machines (SVM). The regression polynomial and support vector machine model are trained from past offsets. The Kalman filter uses past offsets to estimate the clock offset coefficients. In tests with GPS and GLONASS data, it is found that all three methods significantly improve the clock predictions relative to extrapolation with the basic clock model of the last obtained broadcast ephemeris (BE). In particular, the 68% quantile of 7 day clock offset errors of GPS satellites was reduced by 66% with polynomial regression, 69% with Kalman filtering and 56% with SVM on average.","PeriodicalId":119581,"journal":{"name":"2019 International Conference on Localization and GNSS (ICL-GNSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS.2019.8752725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Clock offset predictions along with satellite orbit predictions are used in self-assisted GNSS to reduce the Time-to-First-Fix of a satellite positioning device. This paper compares three methods for predicting GNSS satellite clock offsets: polynomial regression, Kalman filtering and support vector machines (SVM). The regression polynomial and support vector machine model are trained from past offsets. The Kalman filter uses past offsets to estimate the clock offset coefficients. In tests with GPS and GLONASS data, it is found that all three methods significantly improve the clock predictions relative to extrapolation with the basic clock model of the last obtained broadcast ephemeris (BE). In particular, the 68% quantile of 7 day clock offset errors of GPS satellites was reduced by 66% with polynomial regression, 69% with Kalman filtering and 56% with SVM on average.
长期GNSS时钟偏移预测方法
时钟偏移预测与卫星轨道预测一起用于自助GNSS,以减少卫星定位设备的首次定位时间。本文比较了三种预测GNSS卫星时钟偏移的方法:多项式回归、卡尔曼滤波和支持向量机。回归多项式和支持向量机模型是从过去的偏移量中训练出来的。卡尔曼滤波器使用过去的偏移量来估计时钟偏移系数。在GPS和GLONASS数据的测试中,发现这三种方法相对于用最后获得的广播星历(BE)的基本时钟模型外推,都显著提高了时钟预测。其中,GPS卫星7天时钟偏移误差68%的分位数,多项式回归平均减少66%,卡尔曼滤波平均减少69%,SVM平均减少56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信