Cyclostationary feature analysis of CEN-DSRC for cognitive vehicular networks

K. Sithamparanathan, G. Baldini, D. Smely
{"title":"Cyclostationary feature analysis of CEN-DSRC for cognitive vehicular networks","authors":"K. Sithamparanathan, G. Baldini, D. Smely","doi":"10.1109/IVS.2013.6629473","DOIUrl":null,"url":null,"abstract":"Cognitive vehicular networks provide the necessary intelligence for vehicular communication networks in order to optimally utilize the limited resources and maximize the performance. One of the important functions of cognitive networks is to learn the radio environment by means of detecting and identifying existing radios. In this context we use the cyclostationarity features of dedicated short range communication (DSRC) signals to blindly detect them in the environment. We present experimental results on the cyclostationarity properties of DSRC wireless transmissions considering the CEN (European) standards for both uplink and downlink signals. By performing cyclostationarity analysis we compute the cyclic power spectrum (CPS) of the CEN DSRC signals which is then used for detecting the presence of the CEN DSRC radios. We obtain CEN DSRC signals from experiments and use the recorded data to perform post-signal analysis to determine the detection performance. The probability of false alarm and the probability of missed detection are computed and the results are presented for different detection strategies. Results show that the cyclostationarity feature based detection can be robust compared to the well known energy based technique for low signal to noise ratio levels.","PeriodicalId":251198,"journal":{"name":"2013 IEEE Intelligent Vehicles Symposium (IV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2013.6629473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cognitive vehicular networks provide the necessary intelligence for vehicular communication networks in order to optimally utilize the limited resources and maximize the performance. One of the important functions of cognitive networks is to learn the radio environment by means of detecting and identifying existing radios. In this context we use the cyclostationarity features of dedicated short range communication (DSRC) signals to blindly detect them in the environment. We present experimental results on the cyclostationarity properties of DSRC wireless transmissions considering the CEN (European) standards for both uplink and downlink signals. By performing cyclostationarity analysis we compute the cyclic power spectrum (CPS) of the CEN DSRC signals which is then used for detecting the presence of the CEN DSRC radios. We obtain CEN DSRC signals from experiments and use the recorded data to perform post-signal analysis to determine the detection performance. The probability of false alarm and the probability of missed detection are computed and the results are presented for different detection strategies. Results show that the cyclostationarity feature based detection can be robust compared to the well known energy based technique for low signal to noise ratio levels.
认知车辆网络cn - dsrc的周期平稳特征分析
认知车载网络为车载通信网络提供了必要的智能,以优化利用有限的资源,实现性能的最大化。认知网络的一个重要功能是通过探测和识别现有的无线电来学习无线电环境。在这种情况下,我们使用专用短距离通信(DSRC)信号的循环平稳性特征在环境中盲目检测它们。我们给出了考虑CEN(欧洲)上行和下行信号标准的DSRC无线传输循环平稳性的实验结果。通过执行循环平稳性分析,我们计算了CEN DSRC信号的循环功率谱(CPS),然后用于检测CEN DSRC无线电的存在。我们从实验中获得CEN DSRC信号,并使用记录的数据进行信号后分析以确定检测性能。计算了虚警概率和漏检概率,并给出了不同检测策略下的结果。结果表明,在低信噪比水平下,与基于能量的检测相比,基于循环平稳特征的检测具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信