{"title":"Application of Biomedical Text Mining","authors":"Lejun Gong","doi":"10.5772/INTECHOPEN.75924","DOIUrl":null,"url":null,"abstract":"With the enormous volume of biological literature, increasing growth phenomenon due to the high rate of new publications is one of the most common motivations for the biomedical text mining. Aiming at this massive literature to process, it could extract more biological information for mining biomedical knowledge. Using the information will help understand the mechanism of disease generation, promote the development of disease diagnosis technology, and promote the development of new drugs in the field of biomedical research. Based on the background, this chapter introduces the rise of biomedical text mining. Then, it describes the biomedical text-mining technology, namely natural language processing, including the several components. This chapter emphasizes the two aspects in biomedical text mining involving static biomedical information recognization and dynamic biomedical information extraction using instance analysis from our previous works. The aim is to provide a way to quickly understand biomedical text mining for some researchers.","PeriodicalId":442318,"journal":{"name":"Artificial Intelligence - Emerging Trends and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence - Emerging Trends and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.75924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
With the enormous volume of biological literature, increasing growth phenomenon due to the high rate of new publications is one of the most common motivations for the biomedical text mining. Aiming at this massive literature to process, it could extract more biological information for mining biomedical knowledge. Using the information will help understand the mechanism of disease generation, promote the development of disease diagnosis technology, and promote the development of new drugs in the field of biomedical research. Based on the background, this chapter introduces the rise of biomedical text mining. Then, it describes the biomedical text-mining technology, namely natural language processing, including the several components. This chapter emphasizes the two aspects in biomedical text mining involving static biomedical information recognization and dynamic biomedical information extraction using instance analysis from our previous works. The aim is to provide a way to quickly understand biomedical text mining for some researchers.