Fast Simulation Method for Analog Deep Binarized Neural Networks

Chaeun Lee, Jaehyun Kim, Jihun Kim, Jaehyun Kim, Cheol Seong Hwang, Kiyoung Choi
{"title":"Fast Simulation Method for Analog Deep Binarized Neural Networks","authors":"Chaeun Lee, Jaehyun Kim, Jihun Kim, Jaehyun Kim, Cheol Seong Hwang, Kiyoung Choi","doi":"10.1109/ISOCC47750.2019.9078516","DOIUrl":null,"url":null,"abstract":"We propose a simulation method for analog deep binarized neural networks which enables fast and accurate simulation. This method is based on look-up tables and can accelerate simulation on a GPU. It extracts the look-up tables using a circuit simulator such as SPICE under various types of environments. To prove the validity of this method, we show the experimental results for analog deep binarized neural networks. In the experiment, we could accelerate the simulation by 612K times compared to FineSim simulation on an example of multilayer perceptron.","PeriodicalId":113802,"journal":{"name":"2019 International SoC Design Conference (ISOCC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC47750.2019.9078516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a simulation method for analog deep binarized neural networks which enables fast and accurate simulation. This method is based on look-up tables and can accelerate simulation on a GPU. It extracts the look-up tables using a circuit simulator such as SPICE under various types of environments. To prove the validity of this method, we show the experimental results for analog deep binarized neural networks. In the experiment, we could accelerate the simulation by 612K times compared to FineSim simulation on an example of multilayer perceptron.
模拟深度二值化神经网络的快速仿真方法
提出了一种模拟深度二值化神经网络的仿真方法,可以实现快速、准确的仿真。该方法基于查找表,可以在GPU上加速仿真。它使用SPICE等电路模拟器在各种环境下提取查找表。为了证明该方法的有效性,我们给出了模拟深度二值化神经网络的实验结果。在实验中,与FineSim在多层感知器上的仿真相比,我们可以将仿真速度提高612K倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信