GOAT at the FinSim-2 task: Learning Word Representations of Financial Data with Customized Corpus

Yulong Pei, Qian Zhang
{"title":"GOAT at the FinSim-2 task: Learning Word Representations of Financial Data with Customized Corpus","authors":"Yulong Pei, Qian Zhang","doi":"10.1145/3442442.3451385","DOIUrl":null,"url":null,"abstract":"In this paper, we present our approaches for the FinSim 2021 Shared Task on Learning Semantic Similarities for the Financial Domain. The aim of the FinSim shared task is to automatically classify a given list of terms from the financial domain into the most relevant hypernym (or top-level) concept in an external ontology. Two different word representations have been compared in our study, i.e., customized word2vec provided by the shared task and FinBERT. We first create a customized corpus from the given prospectuses and relevant articles from Investopedia. Then we train the domain-specific word2vec embeddings using the customized data with customized word2vec and FinBERT as the initialized embeddings respectively. Our experimental results demonstrate that these customized word embeddings can effectively improve the classification performance and achieve better results than the direct utilization of the provided word embeddings. The class imbalance issue of the given data is also explored. We empirically study the classification performance by employing several different strategies for imbalanced classification problems. Our system ranks 2nd on both Average Accuracy and Mean Rank metrics.","PeriodicalId":129420,"journal":{"name":"Companion Proceedings of the Web Conference 2021","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the Web Conference 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3442442.3451385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present our approaches for the FinSim 2021 Shared Task on Learning Semantic Similarities for the Financial Domain. The aim of the FinSim shared task is to automatically classify a given list of terms from the financial domain into the most relevant hypernym (or top-level) concept in an external ontology. Two different word representations have been compared in our study, i.e., customized word2vec provided by the shared task and FinBERT. We first create a customized corpus from the given prospectuses and relevant articles from Investopedia. Then we train the domain-specific word2vec embeddings using the customized data with customized word2vec and FinBERT as the initialized embeddings respectively. Our experimental results demonstrate that these customized word embeddings can effectively improve the classification performance and achieve better results than the direct utilization of the provided word embeddings. The class imbalance issue of the given data is also explored. We empirically study the classification performance by employing several different strategies for imbalanced classification problems. Our system ranks 2nd on both Average Accuracy and Mean Rank metrics.
在FinSim-2任务中的山羊:使用自定义语料库学习金融数据的单词表示
在本文中,我们介绍了FinSim 2021共享任务在金融领域学习语义相似性的方法。FinSim共享任务的目的是将给定的金融领域术语列表自动分类为外部本体中最相关的超词(或顶级)概念。在我们的研究中比较了两种不同的单词表示,即共享任务提供的定制word2vec和FinBERT。我们首先从给定的招股说明书和来自Investopedia的相关文章中创建一个定制语料库。然后使用定制化的数据,分别以定制化的word2vec和FinBERT作为初始化的嵌入,训练特定领域的word2vec嵌入。实验结果表明,这些定制词嵌入可以有效地提高分类性能,比直接使用提供的词嵌入效果更好。本文还探讨了给定数据的类不平衡问题。通过对不平衡分类问题采用几种不同的分类策略,对分类性能进行了实证研究。我们的系统在平均准确率和平均排名指标上排名第二。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信