{"title":"Comparative Study on Color Components for PCA-Based Face Recognition","authors":"Dongzhu Yin, Yoshihiro Sugaya, S. Omachi, H. Aso","doi":"10.11371/IIEEJ.40.671","DOIUrl":null,"url":null,"abstract":"〈Summary〉 Using color information can significantly improve the face recognition rate instead of using the grayscale luminance image. However, there are few works that try to compare the color space models on face recognition. In this paper, we investigate thirty different color space models on face recognition using the classical principal component analysis (PCA). Through the extensive experiments we find that after successfully diminishing the influence of the illumination the recognition accuracy can be improved by 4.6∼5.5 percent points.","PeriodicalId":153591,"journal":{"name":"The Journal of the Institute of Image Electronics Engineers of Japan","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Institute of Image Electronics Engineers of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11371/IIEEJ.40.671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
〈Summary〉 Using color information can significantly improve the face recognition rate instead of using the grayscale luminance image. However, there are few works that try to compare the color space models on face recognition. In this paper, we investigate thirty different color space models on face recognition using the classical principal component analysis (PCA). Through the extensive experiments we find that after successfully diminishing the influence of the illumination the recognition accuracy can be improved by 4.6∼5.5 percent points.