Comparative Study on Color Components for PCA-Based Face Recognition

Dongzhu Yin, Yoshihiro Sugaya, S. Omachi, H. Aso
{"title":"Comparative Study on Color Components for PCA-Based Face Recognition","authors":"Dongzhu Yin, Yoshihiro Sugaya, S. Omachi, H. Aso","doi":"10.11371/IIEEJ.40.671","DOIUrl":null,"url":null,"abstract":"〈Summary〉 Using color information can significantly improve the face recognition rate instead of using the grayscale luminance image. However, there are few works that try to compare the color space models on face recognition. In this paper, we investigate thirty different color space models on face recognition using the classical principal component analysis (PCA). Through the extensive experiments we find that after successfully diminishing the influence of the illumination the recognition accuracy can be improved by 4.6∼5.5 percent points.","PeriodicalId":153591,"journal":{"name":"The Journal of the Institute of Image Electronics Engineers of Japan","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of the Institute of Image Electronics Engineers of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11371/IIEEJ.40.671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

〈Summary〉 Using color information can significantly improve the face recognition rate instead of using the grayscale luminance image. However, there are few works that try to compare the color space models on face recognition. In this paper, we investigate thirty different color space models on face recognition using the classical principal component analysis (PCA). Through the extensive experiments we find that after successfully diminishing the influence of the illumination the recognition accuracy can be improved by 4.6∼5.5 percent points.
基于pca的人脸识别颜色分量比较研究
<摘要>使用颜色信息代替灰度亮度图像可以显著提高人脸识别率。然而,对色彩空间模型在人脸识别中的比较研究却很少。本文利用经典主成分分析(PCA)研究了30种不同的色彩空间模型在人脸识别中的应用。通过大量的实验,我们发现在成功地消除光照的影响后,识别精度可以提高4.6 ~ 5.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信