The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case ${\it {\bf \max}(r,s)\leq q}$

E.N. Ломакина, M. Nasyrova, V. V. Nasyrov
{"title":"The estimates of the approximation numbers of the Hardy operator acting in the Lorenz spaces in the case ${\\it {\\bf \\max}(r,s)\\leq q}$","authors":"E.N. Ломакина, M. Nasyrova, V. V. Nasyrov","doi":"10.47910/femj202107","DOIUrl":null,"url":null,"abstract":"In the paper conditions are found under which the compact operator $Tf(x)=\\varphi(x)\\int_0^ xf(\\tau)v(\\tau)\\,d\\tau,$ $x>0,$ acting in weighted Lorentz spaces $T:L^{r,s}_{v} (\\mathbb{R^+})\\to L^{p,q}_{\\omega}(\\mathbb{R^+})$ in the domain $1<\\max (r,s)\\le \\min(p,q)<\\infty,$ belongs to operator ideals $\\mathfrak{S}^{(a)}_\\alpha$ and $\\mathfrak{E}_\\alpha$, $0<\\alpha<\\infty$. And estimates are also obtained for the quasinorms of operator ideals in terms of integral expressions which depend on operator weight functions.","PeriodicalId":388451,"journal":{"name":"Dal'nevostochnyi Matematicheskii Zhurnal","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dal'nevostochnyi Matematicheskii Zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47910/femj202107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper conditions are found under which the compact operator $Tf(x)=\varphi(x)\int_0^ xf(\tau)v(\tau)\,d\tau,$ $x>0,$ acting in weighted Lorentz spaces $T:L^{r,s}_{v} (\mathbb{R^+})\to L^{p,q}_{\omega}(\mathbb{R^+})$ in the domain $1<\max (r,s)\le \min(p,q)<\infty,$ belongs to operator ideals $\mathfrak{S}^{(a)}_\alpha$ and $\mathfrak{E}_\alpha$, $0<\alpha<\infty$. And estimates are also obtained for the quasinorms of operator ideals in terms of integral expressions which depend on operator weight functions.
在这种情况下作用于Lorenz空间的Hardy算子的近似数的估计 ${\it {\bf \max}(r,s)\leq q}$
本文给出了在$1<\max (r,s)\le \min(p,q)<\infty,$域中作用于加权洛伦兹空间$T:L^{r,s}_{v} (\mathbb{R^+})\to L^{p,q}_{\omega}(\mathbb{R^+})$的紧算子$Tf(x)=\varphi(x)\int_0^ xf(\tau)v(\tau)\,d\tau,$$x>0,$属于算子理想$\mathfrak{S}^{(a)}_\alpha$和$\mathfrak{E}_\alpha$, $0<\alpha<\infty$的条件。并利用依赖于算子权函数的积分表达式给出了算子理想的拟规范的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信