Efficient Image Recognition Using Local Feature and Fuzzy Triangular Number Based Similarity Measures

N. Belacel
{"title":"Efficient Image Recognition Using Local Feature and Fuzzy Triangular Number Based Similarity Measures","authors":"N. Belacel","doi":"10.4156/IJEI.VOL3.ISSUE1.5","DOIUrl":null,"url":null,"abstract":"Image local scale invariant features are of great importance for object recognition. Among various local scale invariant feature descriptors, Scale Invariant Feature Transform (SIFT) descriptor has been shown to be the most descriptive one and thus widely applied to image retrieval, object recognition and computer vision. By SIFT descriptor, an image may be described by hundreds of key points with each point depicted by a 128-element feature vector; this representation makes the subsequent feature matching very computationally demanding. In this paper, we propose to incorporate the fuzzy set concepts into SIFT features and define fuzzy similarity between images. The proposed approach is applied to image recognition. Experimental results with the coil-100 image database are provided to show the superiority of the proposed approach.","PeriodicalId":223554,"journal":{"name":"International Journal of Engineering and Industries","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering and Industries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4156/IJEI.VOL3.ISSUE1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image local scale invariant features are of great importance for object recognition. Among various local scale invariant feature descriptors, Scale Invariant Feature Transform (SIFT) descriptor has been shown to be the most descriptive one and thus widely applied to image retrieval, object recognition and computer vision. By SIFT descriptor, an image may be described by hundreds of key points with each point depicted by a 128-element feature vector; this representation makes the subsequent feature matching very computationally demanding. In this paper, we propose to incorporate the fuzzy set concepts into SIFT features and define fuzzy similarity between images. The proposed approach is applied to image recognition. Experimental results with the coil-100 image database are provided to show the superiority of the proposed approach.
基于局部特征和模糊三角数相似度量的高效图像识别
图像局部尺度不变性特征对目标识别具有重要意义。在各种局部尺度不变特征描述符中,尺度不变特征变换(SIFT)描述符被证明是最具描述性的描述符,被广泛应用于图像检索、物体识别和计算机视觉等领域。通过SIFT描述符,一幅图像可以由数百个关键点来描述,每个关键点由128个元素的特征向量来描述;这种表示使得后续的特征匹配对计算量的要求非常高。本文提出将模糊集概念融入SIFT特征中,定义图像间的模糊相似度。将该方法应用于图像识别。在coil-100图像数据库上的实验结果表明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信