On Construction of Two Classes of Efficient Quantum Error-Correction Codes

P. Tan, Jing Li
{"title":"On Construction of Two Classes of Efficient Quantum Error-Correction Codes","authors":"P. Tan, Jing Li","doi":"10.1109/ISIT.2007.4557531","DOIUrl":null,"url":null,"abstract":"Stabilizer codes are an important branch of quantum codes, but the existing stabilizer codes constructed from the classical binary codes almost exclusively belong to the special subclass of CSS codes. This paper develops simple and systematic constructions for two rich classes of non-CSS quantum stabilizer codes: quantum low density parity check (LDPC) codes based on classical quasi-cyclic LDPC codes and quantum convolutional codes based on classical LDPC-convolutional codes. Both classes enjoy a wide range of lengths and rates, and offer stronger error correction capability than the existing codes.","PeriodicalId":193467,"journal":{"name":"2007 IEEE International Symposium on Information Theory","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2007.4557531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Stabilizer codes are an important branch of quantum codes, but the existing stabilizer codes constructed from the classical binary codes almost exclusively belong to the special subclass of CSS codes. This paper develops simple and systematic constructions for two rich classes of non-CSS quantum stabilizer codes: quantum low density parity check (LDPC) codes based on classical quasi-cyclic LDPC codes and quantum convolutional codes based on classical LDPC-convolutional codes. Both classes enjoy a wide range of lengths and rates, and offer stronger error correction capability than the existing codes.
两类高效量子纠错码的构造
稳定码是量子码的一个重要分支,但现有的由经典二进制码构造的稳定码几乎完全属于CSS码的特殊子类。本文开发了两类丰富的非css量子稳定码:基于经典准循环LDPC码的量子低密度奇偶校验码和基于经典LDPC-卷积码的量子卷积码。这两个类都有很宽的长度和速率范围,并且提供比现有代码更强的纠错能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信