{"title":"Overcoming IP communication breakdown upon pseudonym changes in the IEEE WAVE","authors":"Sangrok Han, Hyogon Kim, Yongtae Park","doi":"10.1109/VNC.2017.8275622","DOIUrl":null,"url":null,"abstract":"In order to mitigate privacy violations in Wireless Access in Vehicular Environment (WAVE) technology, the WAVE standards prescribe pseudonymity as the primary solution. However, there are hidden complexities and costs that are incurred by the solution for non-safety, IP-based communications. Specifically, the re-addressing across the protocol stack triggered by pseudonym changes interact complicatedly with TCP/IP protocol components such as Multicast Listener Discovery, Duplicate Address Detection, TCP retransmission, and the TCP/IP networking constructs in operating systems. Unless carefully handled, they can compromise the IP communication performance or the privacy property arising from the pseudonymity. In this paper, we illustrate these points with an emphasis on connection management, through a Multipath TCP (MPTCP)-based implementation.","PeriodicalId":101592,"journal":{"name":"2017 IEEE Vehicular Networking Conference (VNC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2017.8275622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In order to mitigate privacy violations in Wireless Access in Vehicular Environment (WAVE) technology, the WAVE standards prescribe pseudonymity as the primary solution. However, there are hidden complexities and costs that are incurred by the solution for non-safety, IP-based communications. Specifically, the re-addressing across the protocol stack triggered by pseudonym changes interact complicatedly with TCP/IP protocol components such as Multicast Listener Discovery, Duplicate Address Detection, TCP retransmission, and the TCP/IP networking constructs in operating systems. Unless carefully handled, they can compromise the IP communication performance or the privacy property arising from the pseudonymity. In this paper, we illustrate these points with an emphasis on connection management, through a Multipath TCP (MPTCP)-based implementation.