Research on improving pedestrian detection algorithm based on YOLOv5

Xiaogang Lin, Anjun Song
{"title":"Research on improving pedestrian detection algorithm based on YOLOv5","authors":"Xiaogang Lin, Anjun Song","doi":"10.1117/12.2682285","DOIUrl":null,"url":null,"abstract":"We proposed a pedestrian detection algorithm combining YOLOv5 with convolution and channel attention mechanism. First, we use our own pedestrian dataset to train the YOLOv5 detection model. Then, three attention mechanisms, SE, CBAMC3, and CoordAtt, are used to enhance the detection performance. The experiment demonstrated that the precision of both SE and CoordAtt decreased, the recall of SE also decreased, while the accuracy of CBAMC3 was improved and the mAP changed little, thus CBAMC3 became the best model for pedestrian detection. Research indicates that adding convolution block attention modules can increase the precision of detecting small pedestrian targets.","PeriodicalId":177416,"journal":{"name":"Conference on Electronic Information Engineering and Data Processing","volume":"12700 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Electronic Information Engineering and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We proposed a pedestrian detection algorithm combining YOLOv5 with convolution and channel attention mechanism. First, we use our own pedestrian dataset to train the YOLOv5 detection model. Then, three attention mechanisms, SE, CBAMC3, and CoordAtt, are used to enhance the detection performance. The experiment demonstrated that the precision of both SE and CoordAtt decreased, the recall of SE also decreased, while the accuracy of CBAMC3 was improved and the mAP changed little, thus CBAMC3 became the best model for pedestrian detection. Research indicates that adding convolution block attention modules can increase the precision of detecting small pedestrian targets.
基于YOLOv5的改进行人检测算法研究
我们提出了一种将YOLOv5与卷积和通道注意机制相结合的行人检测算法。首先,我们使用自己的行人数据集来训练YOLOv5检测模型。然后利用SE、CBAMC3和cordatt三种注意机制来提高检测性能。实验结果表明,SE和cordatt的准确率均有所下降,SE的召回率也有所下降,而CBAMC3的准确率有所提高,mAP的变化不大,因此CBAMC3成为行人检测的最佳模型。研究表明,加入卷积块注意力模块可以提高行人小目标的检测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信