Outlier Detection Using Kmeans and Fuzzy Min Max Neural Network in Network Data

Parmeet Kaur
{"title":"Outlier Detection Using Kmeans and Fuzzy Min Max Neural Network in Network Data","authors":"Parmeet Kaur","doi":"10.1109/CICN.2016.142","DOIUrl":null,"url":null,"abstract":"Outlier detection has been used to detect the outlier and, where appropriate, eliminate outliers from various types of data. It has vital applications in the field of fraud detection, network robustness analysis, Insider Trading Detection, email spam detection, Medical and Public Health Outlier Detection, Industrial Damage Detection, Image processing fraud detection, marketing, network sensors and intrusion detection. In this paper, we propose a kmean clustering and neural network as novel to detect the outlier in network analysis. Especially in a social network, k means clustering and neural network is used to find the community overlapped user in the network as well as it finds more kclique which describe the strong coupling of data. In this paper, we propose that this method is efficient to find out outlier in social network analyses. Moreover, we show the effectiveness of this new method using the experiments data.","PeriodicalId":189849,"journal":{"name":"2016 8th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN.2016.142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Outlier detection has been used to detect the outlier and, where appropriate, eliminate outliers from various types of data. It has vital applications in the field of fraud detection, network robustness analysis, Insider Trading Detection, email spam detection, Medical and Public Health Outlier Detection, Industrial Damage Detection, Image processing fraud detection, marketing, network sensors and intrusion detection. In this paper, we propose a kmean clustering and neural network as novel to detect the outlier in network analysis. Especially in a social network, k means clustering and neural network is used to find the community overlapped user in the network as well as it finds more kclique which describe the strong coupling of data. In this paper, we propose that this method is efficient to find out outlier in social network analyses. Moreover, we show the effectiveness of this new method using the experiments data.
基于Kmeans和模糊最小最大神经网络的网络数据离群点检测
离群值检测用于检测离群值,并在适当的情况下从各种类型的数据中消除离群值。它在欺诈检测、网络鲁棒性分析、内幕交易检测、电子邮件垃圾检测、医疗和公共卫生异常值检测、工业损害检测、图像处理欺诈检测、营销、网络传感器和入侵检测等领域具有重要应用。本文提出了一种新的基于kmean聚类和神经网络的网络分析异常点检测方法。特别是在社交网络中,k表示聚类,神经网络用于寻找网络中有社区重叠的用户,并找到更多描述数据强耦合的kclique。在本文中,我们提出了这种方法在社会网络分析中发现异常值是有效的。并用实验数据验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信