Nonlinear Vibration Analysis of a Fractional Viscoelastic Euler-Bernoulli Microbeam

F. Bakhtiari-Nejad, E. Loghman, M. Pirasteh
{"title":"Nonlinear Vibration Analysis of a Fractional Viscoelastic Euler-Bernoulli Microbeam","authors":"F. Bakhtiari-Nejad, E. Loghman, M. Pirasteh","doi":"10.1115/IMECE2018-87061","DOIUrl":null,"url":null,"abstract":"Nonlinear vibration of a simply-supported Euler-Bernoulli microbeam with fractional Kelvin-Voigt viscoelastic model subjected to harmonic excitation is investigated in this paper. For small scale effects the modified strain gradient theory is used. For take into account geometric nonlinearities the Von karman theory is applied. Beam equations are derived from Hamilton principle and the Galerkin method is used to convert fractional partial differential equations into fractional ordinary differential equations. Problem is solved by using the method of multiple scales and amplitude-frequency equations are obtained for primary, super-harmonic and sub-harmonic resonance. Effects of force amplitude, fractional parameters and nonlinearity on the frequency responses for primary, super-harmonic and sub-harmonic resonance are investigated. Finally results are compared with ordinary Kelvin-Voigt viscoelastic model.","PeriodicalId":197121,"journal":{"name":"Volume 11: Acoustics, Vibration, and Phononics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 11: Acoustics, Vibration, and Phononics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-87061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Nonlinear vibration of a simply-supported Euler-Bernoulli microbeam with fractional Kelvin-Voigt viscoelastic model subjected to harmonic excitation is investigated in this paper. For small scale effects the modified strain gradient theory is used. For take into account geometric nonlinearities the Von karman theory is applied. Beam equations are derived from Hamilton principle and the Galerkin method is used to convert fractional partial differential equations into fractional ordinary differential equations. Problem is solved by using the method of multiple scales and amplitude-frequency equations are obtained for primary, super-harmonic and sub-harmonic resonance. Effects of force amplitude, fractional parameters and nonlinearity on the frequency responses for primary, super-harmonic and sub-harmonic resonance are investigated. Finally results are compared with ordinary Kelvin-Voigt viscoelastic model.
分数阶粘弹性欧拉-伯努利微梁的非线性振动分析
研究了分数阶Kelvin-Voigt粘弹性模型简支欧拉-伯努利微梁在简谐激励下的非线性振动问题。对于小尺度效应,采用修正应变梯度理论。为了考虑几何非线性,应用了冯·卡门理论。利用Hamilton原理推导出梁方程,利用伽辽金方法将分数阶偏微分方程转化为分数阶常微分方程。采用多尺度法求解了该问题,得到了一次谐振、超谐波谐振和次谐波谐振的幅频方程。研究了力幅值、分数参数和非线性对主共振、超谐波和次谐波频率响应的影响。最后与普通Kelvin-Voigt粘弹性模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信