Parallel Bayesian Optimization for Optimal Scheduling of Underground Pumped Hydro-Energy Storage Systems

M. Gobert, Jan Gmys, J. Toubeau, N. Melab, D. Tuyttens, F. Vallée
{"title":"Parallel Bayesian Optimization for Optimal Scheduling of Underground Pumped Hydro-Energy Storage Systems","authors":"M. Gobert, Jan Gmys, J. Toubeau, N. Melab, D. Tuyttens, F. Vallée","doi":"10.1109/IPDPSW55747.2022.00133","DOIUrl":null,"url":null,"abstract":"Underground Pumped Hydro-Energy Storage stations are sustainable options to enhance storage capacity and thus the flexibility of energy systems. Efficient management of such units requires high-performance optimization algorithms able to find solutions in a very restricted timing to comply with the responsive energy markets. In this context, parallel computing offers a valuable solution to ensure appropriate decisions that maximize the profit of the station operator, while guaranteeing the safety of the energy network. This study investigates the use of three existing algorithms in Parallel Bayesian Optimization, namely q-EGO, BSP-EGO and TuRBO. The three algorithms have different inherent behaviors in terms of parallel potential and, even though TuRBO scales better, q-EGO remains the best choice regarding the final outcomes for all investigated batch sizes and manages to get up to 5 times more profits than other approaches.","PeriodicalId":286968,"journal":{"name":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW55747.2022.00133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Underground Pumped Hydro-Energy Storage stations are sustainable options to enhance storage capacity and thus the flexibility of energy systems. Efficient management of such units requires high-performance optimization algorithms able to find solutions in a very restricted timing to comply with the responsive energy markets. In this context, parallel computing offers a valuable solution to ensure appropriate decisions that maximize the profit of the station operator, while guaranteeing the safety of the energy network. This study investigates the use of three existing algorithms in Parallel Bayesian Optimization, namely q-EGO, BSP-EGO and TuRBO. The three algorithms have different inherent behaviors in terms of parallel potential and, even though TuRBO scales better, q-EGO remains the best choice regarding the final outcomes for all investigated batch sizes and manages to get up to 5 times more profits than other approaches.
地下抽水蓄能系统优化调度的并行贝叶斯优化
地下抽水蓄能站是可持续的选择,以提高储存能力,从而提高能源系统的灵活性。高效管理这些设备需要高性能的优化算法,能够在非常有限的时间内找到解决方案,以适应快速响应的能源市场。在这种情况下,并行计算提供了一个有价值的解决方案,以确保适当的决策,使站运营商的利润最大化,同时保证能源网络的安全。本文研究了并行贝叶斯优化中现有的三种算法,即q-EGO、BSP-EGO和TuRBO的使用。这三种算法在并行潜力方面具有不同的固有行为,尽管TuRBO的可扩展性更好,但q-EGO仍然是所有被调查批量大小的最终结果的最佳选择,并且能够获得比其他方法多5倍的利润。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信