{"title":"Strong Electric Field in 2D Graphene: The Integer Quantum Hall regime from a different (many-body) perspective","authors":"G. Konstantinou, K. Moulopoulos","doi":"10.4236/ampc.2018.81003","DOIUrl":null,"url":null,"abstract":"We investigate the emerging consequences of an applied strong in-plane electric field on a macroscopically large graphene sheet subjected to a perpendicular magnetic field, by determining in exact analytical form various many-body thermodynamic properties and the Hall coefficient. The results suggest exotic possibilities that necessitate very careful experimental investigation. In this alternate form of Quantum Hall Effect, non-linear phenomena related to the global magnetization, energy and Hall conductivity (the latter depending on the strengths of magnetic B- and electric E-fields) emerge without using perturbation methods, to all orders of E-field and B-field strengths. Interestingly enough, when the value of the electric field is sufficiently strong, fractional quantization also emerges, whose topological stability has to be verified.","PeriodicalId":369778,"journal":{"name":"arXiv: General Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: General Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ampc.2018.81003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the emerging consequences of an applied strong in-plane electric field on a macroscopically large graphene sheet subjected to a perpendicular magnetic field, by determining in exact analytical form various many-body thermodynamic properties and the Hall coefficient. The results suggest exotic possibilities that necessitate very careful experimental investigation. In this alternate form of Quantum Hall Effect, non-linear phenomena related to the global magnetization, energy and Hall conductivity (the latter depending on the strengths of magnetic B- and electric E-fields) emerge without using perturbation methods, to all orders of E-field and B-field strengths. Interestingly enough, when the value of the electric field is sufficiently strong, fractional quantization also emerges, whose topological stability has to be verified.