On the problem-decomposition of scalable 4D-Var Data Assimilation models

Rossella Arcucci, L. D’Amore, L. Carracciuolo
{"title":"On the problem-decomposition of scalable 4D-Var Data Assimilation models","authors":"Rossella Arcucci, L. D’Amore, L. Carracciuolo","doi":"10.1109/HPCSim.2015.7237097","DOIUrl":null,"url":null,"abstract":"We present an innovative approach for solving Four Dimensional Variational Data Assimilation (4D-VAR DA) problems. The approach we consider starts from a decomposition of the physical domain; it uses a partitioning of the solution and a modified regularization functional describing the 4D-VAR DA problem on the decomposition. We provide a mathematical formulation of the model and we perform a feasibility analysis in terms of computational cost and of algorithmic scalability. We use the scale-up factor which measure the performance gain in terms of time complexity reduction. We verify the reliability of the approach on a consistent test case (the Shallow Water Equations).","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We present an innovative approach for solving Four Dimensional Variational Data Assimilation (4D-VAR DA) problems. The approach we consider starts from a decomposition of the physical domain; it uses a partitioning of the solution and a modified regularization functional describing the 4D-VAR DA problem on the decomposition. We provide a mathematical formulation of the model and we perform a feasibility analysis in terms of computational cost and of algorithmic scalability. We use the scale-up factor which measure the performance gain in terms of time complexity reduction. We verify the reliability of the approach on a consistent test case (the Shallow Water Equations).
可扩展4D-Var数据同化模型的问题分解
我们提出了一种解决四维变分数据同化(4D-VAR DA)问题的创新方法。我们考虑的方法从物理域的分解开始;它使用解的划分和一个改进的正则化函数来描述分解上的4D-VAR数据分析问题。我们提供了模型的数学公式,并从计算成本和算法可扩展性方面进行了可行性分析。我们使用缩放因子来衡量时间复杂度降低方面的性能增益。我们在一个一致的测试用例(浅水方程)上验证了该方法的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信