Minimizing the Misinformation in Social Networks using Heuristic Greedy Algorithm

Dr. M. Jaganathan, Arun Kumar, Keerthana, N.C Santosh Kumar, Shiva Teja
{"title":"Minimizing the Misinformation in Social Networks using Heuristic Greedy Algorithm","authors":"Dr. M. Jaganathan, Arun Kumar, Keerthana, N.C Santosh Kumar, Shiva Teja","doi":"10.35338/ejasr.2022.4703","DOIUrl":null,"url":null,"abstract":"In recent years, online social media has grown in popularity, and a vast volume of information has circulated over social media platforms, altering people's access to information. The credibility of information material is being questioned, and various types of misinformation are using social media to propagate quickly. The importance of network space administration and maintaining a trusted network environment cannot be overstated. In this paper, we look at a new challenge termed the activity minimization of misinformation influence (AMMI) problem, which involves removing a group of nodes from the network in order to reduce the total amount of misinformation interaction between nodes (TAMIN). To put it another way, the AMMI challenge is to choose K nodes from a given social network G to block in order to minimize the TAMIN.We demonstrate that the objective function is neither submodular nor supermodular, and we suggest a heuristic greedy algorithm (HGA) for removing the top K nodes.","PeriodicalId":112326,"journal":{"name":"Emperor Journal of Applied Scientific Research","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emperor Journal of Applied Scientific Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35338/ejasr.2022.4703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, online social media has grown in popularity, and a vast volume of information has circulated over social media platforms, altering people's access to information. The credibility of information material is being questioned, and various types of misinformation are using social media to propagate quickly. The importance of network space administration and maintaining a trusted network environment cannot be overstated. In this paper, we look at a new challenge termed the activity minimization of misinformation influence (AMMI) problem, which involves removing a group of nodes from the network in order to reduce the total amount of misinformation interaction between nodes (TAMIN). To put it another way, the AMMI challenge is to choose K nodes from a given social network G to block in order to minimize the TAMIN.We demonstrate that the objective function is neither submodular nor supermodular, and we suggest a heuristic greedy algorithm (HGA) for removing the top K nodes.
利用启发式贪婪算法最小化社交网络中的错误信息
近年来,网络社交媒体越来越受欢迎,大量信息在社交媒体平台上传播,改变了人们获取信息的方式。信息材料的可信度受到质疑,各种类型的错误信息正在利用社交媒体迅速传播。网络空间管理和维护可信网络环境的重要性怎么强调都不为过。在本文中,我们研究了一个被称为错误信息影响活动最小化(AMMI)问题的新挑战,该问题涉及从网络中删除一组节点,以减少节点之间错误信息交互的总量(TAMIN)。换句话说,AMMI挑战是从给定的社交网络G中选择K个节点来阻止,以最小化TAMIN。我们证明了目标函数既不是次模也不是超模,并且我们提出了一种启发式贪婪算法(HGA)来去除顶部K个节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信