High performance clustering with differential evolution

S. Paterlini, T. Krink
{"title":"High performance clustering with differential evolution","authors":"S. Paterlini, T. Krink","doi":"10.1109/CEC.2004.1331142","DOIUrl":null,"url":null,"abstract":"Partitional clustering poses a NP hard search problem for non-trivial problems. While genetic algorithms (GA) have been very popular in the clustering field, particle swarm optimization (PSO) and differential evolution (DE) are rather unknown. We report results of a performance comparison between a GA, PSO and DE for a medoid evolution clustering approach. Our results show that DE is clearly and consistently superior compared to GAs and PSO, both in respect to precision and robustness of the results for hard clustering problems. We conclude that DE rather than GAs should be primarily considered for tackling partitional clustering problems with numerical optimization.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1331142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

Abstract

Partitional clustering poses a NP hard search problem for non-trivial problems. While genetic algorithms (GA) have been very popular in the clustering field, particle swarm optimization (PSO) and differential evolution (DE) are rather unknown. We report results of a performance comparison between a GA, PSO and DE for a medoid evolution clustering approach. Our results show that DE is clearly and consistently superior compared to GAs and PSO, both in respect to precision and robustness of the results for hard clustering problems. We conclude that DE rather than GAs should be primarily considered for tackling partitional clustering problems with numerical optimization.
基于差分进化的高性能聚类
对于非平凡问题,分区聚类提出了一个NP难搜索问题。遗传算法(GA)在聚类领域非常流行,而粒子群算法(PSO)和差分进化算法(DE)却鲜为人知。我们报告了一种媒介进化聚类方法的GA、PSO和DE之间的性能比较结果。我们的研究结果表明,无论是在硬聚类问题的精度还是结果的鲁棒性方面,DE都明显优于GAs和PSO。我们的结论是,在用数值优化解决分区聚类问题时,应该主要考虑DE而不是GAs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信