Artificial neural networks for modeling and simulation of communication systems with nonlinear devices

’. MichaelDevetsikiotis, J., Keith Townsend, Mark W. White
{"title":"Artificial neural networks for modeling and simulation of communication systems with nonlinear devices","authors":"’. MichaelDevetsikiotis, J., Keith Townsend, Mark W. White","doi":"10.1109/ICC.1994.368818","DOIUrl":null,"url":null,"abstract":"Nonlinear devices and subsystems present formidable challenges in the analysis of communication systems, and a major motivation for using the simulation approach. Typically nonlinear subsystems are originally described in terms of nonlinear differential equations (NLDE). Directly implementing the numerical solution of the NLDE into simulation block models can be computationally intensive as well as numerically unstable. We present here a simulation methodology that uses artificial neural networks (ANN) to build and efficiently simulate block models of nonlinear devices and subsystems within larger communication system models. We illustrate the usefulness of this approach and the validity of our analysis by showing significant run time savings in the simulation of an optical time-division multiple-access (OTDMA) architecture that involves a two input optoelectronic \"AND\" device.<<ETX>>","PeriodicalId":112111,"journal":{"name":"Proceedings of ICC/SUPERCOMM'94 - 1994 International Conference on Communications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICC/SUPERCOMM'94 - 1994 International Conference on Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.1994.368818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nonlinear devices and subsystems present formidable challenges in the analysis of communication systems, and a major motivation for using the simulation approach. Typically nonlinear subsystems are originally described in terms of nonlinear differential equations (NLDE). Directly implementing the numerical solution of the NLDE into simulation block models can be computationally intensive as well as numerically unstable. We present here a simulation methodology that uses artificial neural networks (ANN) to build and efficiently simulate block models of nonlinear devices and subsystems within larger communication system models. We illustrate the usefulness of this approach and the validity of our analysis by showing significant run time savings in the simulation of an optical time-division multiple-access (OTDMA) architecture that involves a two input optoelectronic "AND" device.<>
具有非线性装置的通信系统建模与仿真的人工神经网络
非线性设备和子系统在通信系统分析中提出了巨大的挑战,也是使用仿真方法的主要动机。非线性子系统通常是用非线性微分方程(NLDE)来描述的。将NLDE的数值解直接实现到仿真块模型中,计算量大且数值不稳定。我们在这里提出了一种仿真方法,该方法使用人工神经网络(ANN)来构建和有效地模拟大型通信系统模型中非线性设备和子系统的块模型。我们通过展示在涉及双输入光电“与”器件的光时分多址(OTDMA)架构的模拟中显着节省运行时间来说明这种方法的实用性和我们分析的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信