R. Brause, Timm Sebastian Langsdorf, Hans-Michael Hepp
{"title":"Neural data mining for credit card fraud detection","authors":"R. Brause, Timm Sebastian Langsdorf, Hans-Michael Hepp","doi":"10.1109/TAI.1999.809773","DOIUrl":null,"url":null,"abstract":"The prevention of credit card fraud is an important application for prediction techniques. One major obstacle for using neural network training techniques is the high necessary diagnostic quality: since only one financial transaction in a thousand is invalid no prediction success less than 99.9% is acceptable. Because of these credit card transaction requirements, completely new concepts had to be developed and tested on real credit card data. This paper shows how advanced data mining techniques and a neural network algorithm can be combined successfully to obtain a high fraud coverage combined with a low false alarm rate.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"407","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 407
Abstract
The prevention of credit card fraud is an important application for prediction techniques. One major obstacle for using neural network training techniques is the high necessary diagnostic quality: since only one financial transaction in a thousand is invalid no prediction success less than 99.9% is acceptable. Because of these credit card transaction requirements, completely new concepts had to be developed and tested on real credit card data. This paper shows how advanced data mining techniques and a neural network algorithm can be combined successfully to obtain a high fraud coverage combined with a low false alarm rate.