Human Gait Silhouettes Extraction Using Haar Cascade Classifier on OpenCV

A. P. Ismail, N. Tahir
{"title":"Human Gait Silhouettes Extraction Using Haar Cascade Classifier on OpenCV","authors":"A. P. Ismail, N. Tahir","doi":"10.1109/UKSim.2017.25","DOIUrl":null,"url":null,"abstract":"Human Silhouette Extraction is one of the vital task in human abnormality gait detection. Hence in this study, extraction of human gait silhouette using Haar Cascade classifier is developed. This is done by detecting the region of interests (ROI) and by cropping the selected areas followed by background subtraction to eliminate unwanted background and further convert the images to silhouettes form based on human gait sequences acquired. Next, human abnormality gait detection is conducted based on front view markerless model. Classification results attained showed that the developed Haar cascade classifier is indeed suitable and robust in extracting front view gait features for abnormality gait detection with detection time of KNN surpass the SVM classifier.","PeriodicalId":309250,"journal":{"name":"2017 UKSim-AMSS 19th International Conference on Computer Modelling & Simulation (UKSim)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 UKSim-AMSS 19th International Conference on Computer Modelling & Simulation (UKSim)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKSim.2017.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Human Silhouette Extraction is one of the vital task in human abnormality gait detection. Hence in this study, extraction of human gait silhouette using Haar Cascade classifier is developed. This is done by detecting the region of interests (ROI) and by cropping the selected areas followed by background subtraction to eliminate unwanted background and further convert the images to silhouettes form based on human gait sequences acquired. Next, human abnormality gait detection is conducted based on front view markerless model. Classification results attained showed that the developed Haar cascade classifier is indeed suitable and robust in extracting front view gait features for abnormality gait detection with detection time of KNN surpass the SVM classifier.
基于OpenCV的Haar级联分类器人体步态轮廓提取
人体轮廓提取是人体异常步态检测的重要内容之一。因此,本研究提出了利用Haar级联分类器提取人体步态轮廓的方法。这是通过检测感兴趣区域(ROI)和裁剪选定区域,然后进行背景减法来消除不需要的背景,并进一步将图像转换为基于获取的人体步态序列的轮廓形式来完成的。其次,基于前视图无标记模型进行人体异常步态检测。分类结果表明,所开发的Haar级联分类器在提取前视步态特征用于异常步态检测方面具有较好的鲁棒性,且KNN的检测时间优于SVM分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信