Existence of solutions for $m$-point fractional boundary value problems.

N. Nyamoradi
{"title":"Existence of solutions for $m$-point fractional boundary value problems.","authors":"N. Nyamoradi","doi":"10.0000/IJAMC.2013.5.1.454","DOIUrl":null,"url":null,"abstract":"In this paper, by employing the Leggett-Williams fixed point theorem, we study the existence of three solutions or the following $m$-point fractional boundary value problem \\begin{equation*} \\begin{cases} {}^cD_{0^+}^\\alpha u (t) = f (t, u (t), u' (t)), &    t \\in (0, 1),\\\\ u''(0) = 0, \\;\\;\\;u' (0) = \\sum_{i = 1}^{m - 2} a_i u' (\\xi_i), \\;\\;\\; u (1) = \\sum_{i = 1}^{m - 2} b_i u (\\xi_i), \\end{cases} \\end{equation*} where $2 0$ for $1 \\leq i \\leq m - 2$ and $\\sum_{i = 1}^{m - 2} a_i < 1$, $0 < \\sum_{i = 1}^{m - 2} b_i  < 1$, $f \\in C ([0, 1] \\times [0, \\infty); [0, \\infty))$.","PeriodicalId":173223,"journal":{"name":"International Journal of Applied Mathematics and Computation","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.0000/IJAMC.2013.5.1.454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, by employing the Leggett-Williams fixed point theorem, we study the existence of three solutions or the following $m$-point fractional boundary value problem \begin{equation*} \begin{cases} {}^cD_{0^+}^\alpha u (t) = f (t, u (t), u' (t)), &    t \in (0, 1),\\ u''(0) = 0, \;\;\;u' (0) = \sum_{i = 1}^{m - 2} a_i u' (\xi_i), \;\;\; u (1) = \sum_{i = 1}^{m - 2} b_i u (\xi_i), \end{cases} \end{equation*} where $2 0$ for $1 \leq i \leq m - 2$ and $\sum_{i = 1}^{m - 2} a_i < 1$, $0 < \sum_{i = 1}^{m - 2} b_i  < 1$, $f \in C ([0, 1] \times [0, \infty); [0, \infty))$.
$m$点分数边值问题解的存在性
本文利用Leggett-Williams不动点定理,研究了以下$m$ -point分数边值问题\begin{equation*} \begin{cases} {}^cD_{0^+}^\alpha u (t) = f (t, u (t), u' (t)), &    t \in (0, 1),\\ u''(0) = 0, \;\;\;u' (0) = \sum_{i = 1}^{m - 2} a_i u' (\xi_i), \;\;\; u (1) = \sum_{i = 1}^{m - 2} b_i u (\xi_i), \end{cases} \end{equation*}的三个解的存在性,其中$2 0$为$1 \leq i \leq m - 2$和$\sum_{i = 1}^{m - 2} a_i < 1$, $0 < \sum_{i = 1}^{m - 2} b_i  < 1$, $f \in C ([0, 1] \times [0, \infty); [0, \infty))$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信