MANIAC: A Man-Machine Collaborative System for Classifying Malware Author Groups

Eujeanne Kim, Sung-Jun Park, Seokwoo Choi, Dong-Kyu Chae, Sang-Wook Kim
{"title":"MANIAC: A Man-Machine Collaborative System for Classifying Malware Author Groups","authors":"Eujeanne Kim, Sung-Jun Park, Seokwoo Choi, Dong-Kyu Chae, Sang-Wook Kim","doi":"10.1145/3460120.3485355","DOIUrl":null,"url":null,"abstract":"In this demo, we show MANIAC, a MAN-machIne collaborative system for malware Author Classification. It is developed to fight a number of author groups who have been generating lots of new malwares by sharing source code within a group and exploiting evasive schemes such as polymorphism and metamorphism. Notably, MANIAC allows users to intervene in the model's classification of malware authors with high uncertainty. It also provides effective interfaces and visualizations with users to achieve maximum classification accuracy with minimum human labor.","PeriodicalId":135883,"journal":{"name":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460120.3485355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this demo, we show MANIAC, a MAN-machIne collaborative system for malware Author Classification. It is developed to fight a number of author groups who have been generating lots of new malwares by sharing source code within a group and exploiting evasive schemes such as polymorphism and metamorphism. Notably, MANIAC allows users to intervene in the model's classification of malware authors with high uncertainty. It also provides effective interfaces and visualizations with users to achieve maximum classification accuracy with minimum human labor.
MANIAC:一个用于恶意软件作者组分类的人机协作系统
在这个演示中,我们展示了MANIAC,一个用于恶意软件作者分类的人机协作系统。它的开发是为了对抗一些作者小组,这些小组通过在一个小组内共享源代码和利用诸如多态性和变形等规避方案来生成大量新的恶意软件。值得注意的是,MANIAC允许用户以高不确定性干预模型对恶意软件作者的分类。它还为用户提供了有效的界面和可视化,以最少的人力劳动实现最大的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信