A binarization algorithm for historical arabic manuscript images using a neutrosophic approach

K. Amin, Mohamed Abd Elfattah, A. Hassanien, G. Schaefer
{"title":"A binarization algorithm for historical arabic manuscript images using a neutrosophic approach","authors":"K. Amin, Mohamed Abd Elfattah, A. Hassanien, G. Schaefer","doi":"10.5281/ZENODO.22997","DOIUrl":null,"url":null,"abstract":"In this paper, an improved thresholding approach based on neutrosophic sets (NSs) and adaptive thresholding is proposed. This is applied to degraded historical documents imaging and its performance evaluated. The input RGB image is transformed into the NS domain, which is described using three subsets, namely the percentage of truth in a subset, the percentage of indeterminacy in a subset, and the percentage of falsity in a subset. The entropy in NS is employed to evaluate the indeterminacy with a λ-mean operation used to minimize indeterminacy. Finally, the historical document image is binarized using an adaptive thresholding technique. Experimental results demonstrate that the proposed approach is able to select appropriate image thresholds automatically and effectively, while it is shown to be less sensitive to noise and to perform better compared with other binarization algorithms.","PeriodicalId":339697,"journal":{"name":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 9th International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.22997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In this paper, an improved thresholding approach based on neutrosophic sets (NSs) and adaptive thresholding is proposed. This is applied to degraded historical documents imaging and its performance evaluated. The input RGB image is transformed into the NS domain, which is described using three subsets, namely the percentage of truth in a subset, the percentage of indeterminacy in a subset, and the percentage of falsity in a subset. The entropy in NS is employed to evaluate the indeterminacy with a λ-mean operation used to minimize indeterminacy. Finally, the historical document image is binarized using an adaptive thresholding technique. Experimental results demonstrate that the proposed approach is able to select appropriate image thresholds automatically and effectively, while it is shown to be less sensitive to noise and to perform better compared with other binarization algorithms.
使用嗜中性方法的阿拉伯历史手稿图像二值化算法
本文提出了一种基于嗜中性集(NSs)和自适应阈值的改进阈值方法。该方法应用于退化的历史文档成像,并对其性能进行了评估。将输入的RGB图像转换为NS域,该域使用三个子集来描述,即子集中的真百分比,子集中的不确定百分比和子集中的假百分比。利用NS中的熵来评估不确定性,并采用λ均值运算来最小化不确定性。最后,使用自适应阈值技术对历史文档图像进行二值化。实验结果表明,该方法能够自动有效地选择合适的图像阈值,并且对噪声的敏感性较低,与其他二值化算法相比具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信