Fault Detection and Estimation for a Class of Nonlinear Distributed Parameter Systems

H. Ferdowsi, Jia Cai, S. Jagannathan
{"title":"Fault Detection and Estimation for a Class of Nonlinear Distributed Parameter Systems","authors":"H. Ferdowsi, Jia Cai, S. Jagannathan","doi":"10.1109/ICPHM.2019.8819432","DOIUrl":null,"url":null,"abstract":"This paper presents a new model-based fault detection and estimation framework for a class of multi-input and multi-output (MIMO) nonlinear distributed parameter systems (DPS) described by partial differential equations (PDE) with actuator and sensor faults. The fault functions cover both abrupt and incipient faults. A Luenberger type observer is used to monitor the health of the DPS as a detection observer on the basis of the nonlinear PDE representation of the system with measured output vector. By taking the difference between measured and estimated outputs from this observer, a residual signal is generated for fault detection. If the detection residual exceeds a predefined threshold, a fault will be claimed to be active. Once an actuator or a sensor fault is detected and the fault type is identified, an appropriate fault parameter update law is developed to learn the fault dynamics online with the help of an additional output measurement. Eventually, the proposed detection and estimation framework is demonstrated on a nonlinear process.","PeriodicalId":113460,"journal":{"name":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","volume":"06 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Prognostics and Health Management (ICPHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2019.8819432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new model-based fault detection and estimation framework for a class of multi-input and multi-output (MIMO) nonlinear distributed parameter systems (DPS) described by partial differential equations (PDE) with actuator and sensor faults. The fault functions cover both abrupt and incipient faults. A Luenberger type observer is used to monitor the health of the DPS as a detection observer on the basis of the nonlinear PDE representation of the system with measured output vector. By taking the difference between measured and estimated outputs from this observer, a residual signal is generated for fault detection. If the detection residual exceeds a predefined threshold, a fault will be claimed to be active. Once an actuator or a sensor fault is detected and the fault type is identified, an appropriate fault parameter update law is developed to learn the fault dynamics online with the help of an additional output measurement. Eventually, the proposed detection and estimation framework is demonstrated on a nonlinear process.
一类非线性分布参数系统的故障检测与估计
针对一类多输入多输出(MIMO)非线性分布参数系统(DPS)存在致动器和传感器故障的情况,提出了一种新的基于模型的故障检测与估计框架。断层功能既包括突发性断层,也包括早期断层。采用Luenberger型观测器作为检测观测器,基于系统的非线性偏微分方程表示和测量输出向量来监测DPS的健康状况。通过从该观测器获取测量输出和估计输出的差值,产生残差信号用于故障检测。如果检测残余超过预定义的阈值,则将声称故障是活动的。在检测到执行器或传感器故障并确定故障类型后,建立相应的故障参数更新规律,借助附加的输出测量在线学习故障动态。最后,在一个非线性过程中对所提出的检测和估计框架进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信