Index for the Evaluation of Segmentation (IAVAS): An Application to Agriculture

Julio Cesar de Oliveira, A. Formaggio, J. Epiphanio, A. J. B. Luiz
{"title":"Index for the Evaluation of Segmentation (IAVAS): An Application to Agriculture","authors":"Julio Cesar de Oliveira, A. Formaggio, J. Epiphanio, A. J. B. Luiz","doi":"10.2747/0749-3878.40.3.155","DOIUrl":null,"url":null,"abstract":"The use of segmentation algorithms for determining the boundaries of cultivated plots is an essential step in the process of agricultural land use classification using digital remote sensing imagery. Thus, the main objective of the present research was the development of a quantitative method (IAVAS) for evaluating the results of segmentation of space imagery. The proposed methodology defines criteria for selecting thresholds (area and similarity) for the segmentation algorithm (region-growing approach). From the results obtained it was verified that the quantitative methodology proposed provides a suitable and efficient way to identify the best segmentation thresholds for agricultural land use classification.","PeriodicalId":405012,"journal":{"name":"Mapping Sciences and Remote Sensing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mapping Sciences and Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2747/0749-3878.40.3.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The use of segmentation algorithms for determining the boundaries of cultivated plots is an essential step in the process of agricultural land use classification using digital remote sensing imagery. Thus, the main objective of the present research was the development of a quantitative method (IAVAS) for evaluating the results of segmentation of space imagery. The proposed methodology defines criteria for selecting thresholds (area and similarity) for the segmentation algorithm (region-growing approach). From the results obtained it was verified that the quantitative methodology proposed provides a suitable and efficient way to identify the best segmentation thresholds for agricultural land use classification.
分割评价指标(IAVAS)在农业中的应用
利用分割算法确定耕地边界是利用数字遥感影像进行农用地分类的重要步骤。因此,本研究的主要目的是开发一种定量方法(IAVAS)来评估空间图像分割的结果。该方法定义了分割算法(区域增长法)的阈值选择标准(面积和相似度)。结果表明,所提出的定量方法为确定农业用地分类的最佳分割阈值提供了一种合适而有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信