Factorized geometrical autofocus: On the geometry search

Jan Torgrimsson, L. Ulander, P. Dammert, H. Hellsten
{"title":"Factorized geometrical autofocus: On the geometry search","authors":"Jan Torgrimsson, L. Ulander, P. Dammert, H. Hellsten","doi":"10.1109/RADAR.2016.7485117","DOIUrl":null,"url":null,"abstract":"This paper deals with local geometry optimization within the scope of Factorized Geometrical Autofocus (FGA). The FGA algorithm is a Fast Factorized Back-Projection (FFBP) formulation with six free geometry parameters. These are tuned until a sharp image is obtained, i.e. with respect to an object function. To optimize the geometry (from a focus perspective) for a small image area, we propose an efficient routine based on correlation, sensitivity analysis and Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization. The new routine is evaluated using simulated Ultra-WideBand (UWB) data. By applying the FGA algorithm step-by-step, an erroneous geometry is compensated. This gives a focused image. In regard to run time, the new routine is approximately 100 times faster than a brute-force approach, i.e. for this FGA problem. For a general problem, the run time reduction will be far greater. To be more specific: with x parameters and N values to assess for each parameter; it is anticipated that the computational effort will decrease exponentially by a factor close to Nx.","PeriodicalId":185932,"journal":{"name":"2016 IEEE Radar Conference (RadarConf)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Radar Conference (RadarConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2016.7485117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper deals with local geometry optimization within the scope of Factorized Geometrical Autofocus (FGA). The FGA algorithm is a Fast Factorized Back-Projection (FFBP) formulation with six free geometry parameters. These are tuned until a sharp image is obtained, i.e. with respect to an object function. To optimize the geometry (from a focus perspective) for a small image area, we propose an efficient routine based on correlation, sensitivity analysis and Broyden-Fletcher-Goldfarb-Shanno (BFGS) minimization. The new routine is evaluated using simulated Ultra-WideBand (UWB) data. By applying the FGA algorithm step-by-step, an erroneous geometry is compensated. This gives a focused image. In regard to run time, the new routine is approximately 100 times faster than a brute-force approach, i.e. for this FGA problem. For a general problem, the run time reduction will be far greater. To be more specific: with x parameters and N values to assess for each parameter; it is anticipated that the computational effort will decrease exponentially by a factor close to Nx.
分解几何自动对焦:关于几何搜索
本文研究了因式几何自动对焦(FGA)的局部几何优化问题。FGA算法是一种具有六个自由几何参数的快速分解反投影(FFBP)算法。这些调整,直到获得一个清晰的图像,即相对于一个目标函数。为了优化小图像区域的几何形状(从焦点角度),我们提出了一种基于相关性、灵敏度分析和BFGS (Broyden-Fletcher-Goldfarb-Shanno)最小化的有效方法。利用模拟超宽带(UWB)数据对新例程进行了评估。通过逐步应用FGA算法,补偿了错误的几何形状。这样就得到了一个聚焦的图像。关于运行时间,新例程比暴力方法快大约100倍,即对于这个FGA问题。对于一般问题,运行时间的减少将会大得多。更具体地说:有x个参数和N个值来评估每个参数;预计计算工作量将以接近Nx的因子呈指数级下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信