A quantitative metric of visual-words separability for a more discriminative visual vocabulary in an unsupervised manner

Xin Feng, B. Li, Yongxin Ge, Jiaxing Tan
{"title":"A quantitative metric of visual-words separability for a more discriminative visual vocabulary in an unsupervised manner","authors":"Xin Feng, B. Li, Yongxin Ge, Jiaxing Tan","doi":"10.1109/ICICS.2013.6782779","DOIUrl":null,"url":null,"abstract":"The task of visual vocabulary construction plays an important role in the bag-of-words based pattern analysis and robotic applications. A discriminative vocabulary generation in unsupervised case is an open issue for reducing perceptual aliasing in image matching based applications. In this paper, we present a scheme to evaluate the discriminative power of each visual word quantitatively in terms of Mahalanobis separability, and a discriminative visual vocabulary is obtained through adaptively updating the poor discriminative visual words in an unsupervised manner. The effectiveness of our metric is demonstrated in the experiment of loop-closure detection under strong perceptual aliasing condition in both indoor and outdoor image sequences.","PeriodicalId":184544,"journal":{"name":"2013 9th International Conference on Information, Communications & Signal Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 9th International Conference on Information, Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2013.6782779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The task of visual vocabulary construction plays an important role in the bag-of-words based pattern analysis and robotic applications. A discriminative vocabulary generation in unsupervised case is an open issue for reducing perceptual aliasing in image matching based applications. In this paper, we present a scheme to evaluate the discriminative power of each visual word quantitatively in terms of Mahalanobis separability, and a discriminative visual vocabulary is obtained through adaptively updating the poor discriminative visual words in an unsupervised manner. The effectiveness of our metric is demonstrated in the experiment of loop-closure detection under strong perceptual aliasing condition in both indoor and outdoor image sequences.
一种非监督方式下更具判别性的视觉词汇可分性的定量度量
视觉词汇构建任务在基于词袋的模式分析和机器人应用中起着重要的作用。在基于图像匹配的应用中,无监督情况下的判别词汇生成是减少感知混叠的一个开放问题。本文提出了一种基于Mahalanobis可分性定量评价视觉词判别能力的方案,并通过无监督方式自适应地更新差判别性视觉词,得到一个判别性视觉词汇。在室内和室外图像序列强感知混叠条件下的闭环检测实验中,验证了该度量的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信