Two approaches to nonlinear systems optimal control by using neural networks

L. Acosta, A. Hamilton, L. Moreno, J.L. Sanchez, J. D. Piñeiro, J. A. Méndez
{"title":"Two approaches to nonlinear systems optimal control by using neural networks","authors":"L. Acosta, A. Hamilton, L. Moreno, J.L. Sanchez, J. D. Piñeiro, J. A. Méndez","doi":"10.1109/ICNN.1994.375013","DOIUrl":null,"url":null,"abstract":"In this paper we present two methods based on neural networks (NN) for resolution of nonlinear systems optimal control with arbitrary performance index. We have used the minimum time index as an example. Both methods solve the optimal problem for a region of the state space by means of a multistage optimization through a NN chain. Each NN has a fully connected feedforward multilayer structure and the training algorithm for the NN chain is the backpropagation. The chain structure is different for each method, as well as the discretization procedure: classical and block pulse function.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.375013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we present two methods based on neural networks (NN) for resolution of nonlinear systems optimal control with arbitrary performance index. We have used the minimum time index as an example. Both methods solve the optimal problem for a region of the state space by means of a multistage optimization through a NN chain. Each NN has a fully connected feedforward multilayer structure and the training algorithm for the NN chain is the backpropagation. The chain structure is different for each method, as well as the discretization procedure: classical and block pulse function.<>
非线性系统的两种神经网络最优控制方法
本文提出了两种基于神经网络的求解任意性能指标非线性系统最优控制的方法。我们以最小时间指数为例。这两种方法都是通过神经网络链的多阶段优化来解决状态空间区域的最优问题。每个神经网络都有一个完全连接的前馈多层结构,神经网络链的训练算法是反向传播。每种方法的链结构不同,离散化过程也不同:经典脉冲函数和块脉冲函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信