L/sub /spl infin//-constrained high-fidelity image compression via adaptive context modeling

Xiaolin Wu, W. K. Choi, P. Bao
{"title":"L/sub /spl infin//-constrained high-fidelity image compression via adaptive context modeling","authors":"Xiaolin Wu, W. K. Choi, P. Bao","doi":"10.1109/DCC.1997.581978","DOIUrl":null,"url":null,"abstract":"We study high-fidelity image compression with a given tight bound on the maximum error magnitude. We propose some practical adaptive context modeling techniques to correct prediction biases caused by quantizing prediction residues, a problem common to the current DPCM like predictive nearly-lossless image coders. By incorporating the proposed techniques into the nearly-lossless version of CALIC, we were able to increase its PSNR by 1 dB or more and/or reduce its bit rate by ten per cent or more. More encouragingly, at bit rates around 1.25 bpp our method obtained competitive PSNR results against the best wavelet coders, while obtaining much smaller maximum error magnitude.","PeriodicalId":403990,"journal":{"name":"Proceedings DCC '97. Data Compression Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '97. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1997.581978","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We study high-fidelity image compression with a given tight bound on the maximum error magnitude. We propose some practical adaptive context modeling techniques to correct prediction biases caused by quantizing prediction residues, a problem common to the current DPCM like predictive nearly-lossless image coders. By incorporating the proposed techniques into the nearly-lossless version of CALIC, we were able to increase its PSNR by 1 dB or more and/or reduce its bit rate by ten per cent or more. More encouragingly, at bit rates around 1.25 bpp our method obtained competitive PSNR results against the best wavelet coders, while obtaining much smaller maximum error magnitude.
基于自适应上下文建模的L/sub /spl infin//约束高保真图像压缩
我们研究了在给定最大误差大小的严格约束下的高保真图像压缩。我们提出了一些实用的自适应上下文建模技术来纠正由量化预测残差引起的预测偏差,这是当前DPCM常见的问题,如预测近无损图像编码器。通过将所提出的技术整合到近乎无损的CALIC版本中,我们能够将其PSNR提高1 dB或更多,并且/或将其比特率降低10%或更多。更令人鼓舞的是,在比特率约为1.25 bpp时,我们的方法与最佳小波编码器相比获得了具有竞争力的PSNR结果,同时获得了更小的最大误差幅度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信