System Identification of Flexible Beam Structure Using Artificial Neural Network

N. A. Jalil, I. Z. Mat Darus
{"title":"System Identification of Flexible Beam Structure Using Artificial Neural Network","authors":"N. A. Jalil, I. Z. Mat Darus","doi":"10.1109/CIMSIM.2013.9","DOIUrl":null,"url":null,"abstract":"This paper presents the development of a nonparametric model that represents the dynamic behaviour of a flexible beam system utilizing several artificial neuralnetwork algorithms. Input-output data used in this study isobtained from Finite Difference algorithm's simulation. Thealgorithm is validated through comparison of its natural frequencies of vibration with the theoretical values. For system identification, non-parametric approach namely ArtificialNeural Network (ANN) is utilized in this study. First is by using Multilayer Perceptron (MLP) and the second method isby using Radial Basis Function (RBF). Several validation testswere carried out to measure the performance of developed model for each technique. Results indicated a superiority for both techniques in modelling a flexible beam structure.","PeriodicalId":249355,"journal":{"name":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fifth International Conference on Computational Intelligence, Modelling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIM.2013.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents the development of a nonparametric model that represents the dynamic behaviour of a flexible beam system utilizing several artificial neuralnetwork algorithms. Input-output data used in this study isobtained from Finite Difference algorithm's simulation. Thealgorithm is validated through comparison of its natural frequencies of vibration with the theoretical values. For system identification, non-parametric approach namely ArtificialNeural Network (ANN) is utilized in this study. First is by using Multilayer Perceptron (MLP) and the second method isby using Radial Basis Function (RBF). Several validation testswere carried out to measure the performance of developed model for each technique. Results indicated a superiority for both techniques in modelling a flexible beam structure.
柔性梁结构的人工神经网络辨识
本文利用几种人工神经网络算法建立了一种表征柔性梁系统动态行为的非参数模型。本研究中使用的输入输出数据是由有限差分算法模拟得到的。通过将其固有振动频率与理论值进行比较,验证了算法的有效性。对于系统辨识,本研究采用非参数方法即人工神经网络(ANN)。第一种方法是使用多层感知器(MLP),第二种方法是使用径向基函数(RBF)。进行了若干验证测试,以衡量每种技术开发模型的性能。结果表明,这两种技术在模拟柔性梁结构方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信