Patterns of weber magnitude and orientation for face recognition

Biao Wang, Weifeng Li, Zhimin Li, Q. Liao
{"title":"Patterns of weber magnitude and orientation for face recognition","authors":"Biao Wang, Weifeng Li, Zhimin Li, Q. Liao","doi":"10.1109/ICIP.2012.6467141","DOIUrl":null,"url":null,"abstract":"Feature extraction is vital for a successful face recognition system. In this paper, we propose a computationally efficient, discriminative and robust feature descriptor for face images, named Patterns of Weber magnitude and orientation (PWMO), which encodes Weber magnitude and orientation with patch-based local binary pattern (p-LBP) and patch-based local XOR pattern (p-LXP), respectively. Furthermore, whitened PCA is introduced to reduce the feature dimensionality and select the most discriminative feature sets, and the block-based scheme is incorporated to address the small sample size problem. The effectiveness and robustness of our proposed approach has been demonstrated experimentally on the well-known FERET database.","PeriodicalId":147245,"journal":{"name":"International Conference on Information Photonics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2012.6467141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Feature extraction is vital for a successful face recognition system. In this paper, we propose a computationally efficient, discriminative and robust feature descriptor for face images, named Patterns of Weber magnitude and orientation (PWMO), which encodes Weber magnitude and orientation with patch-based local binary pattern (p-LBP) and patch-based local XOR pattern (p-LXP), respectively. Furthermore, whitened PCA is introduced to reduce the feature dimensionality and select the most discriminative feature sets, and the block-based scheme is incorporated to address the small sample size problem. The effectiveness and robustness of our proposed approach has been demonstrated experimentally on the well-known FERET database.
人脸识别的韦伯数量级和方向模式
特征提取是人脸识别系统成功的关键。本文提出了一种计算效率高、判别能力强、鲁棒性强的人脸图像特征描述符韦伯量级和方向模式(Patterns of Weber magnitude and orientation, PWMO),分别用基于patch的局部二值模式(p-LBP)和基于patch的局部异或模式(p-LXP)对Weber量级和方向进行编码。在此基础上,引入白化主成分分析来降低特征维数,选择最具判别性的特征集,并结合基于块的方案来解决小样本问题。我们提出的方法的有效性和鲁棒性已经在著名的FERET数据库上得到了实验证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信