Online Water Usage Monitoring under Anomalous Interference in Residential Households

R. Chao, Lo Pang-Yun Ting, Kun-Ta Chuang
{"title":"Online Water Usage Monitoring under Anomalous Interference in Residential Households","authors":"R. Chao, Lo Pang-Yun Ting, Kun-Ta Chuang","doi":"10.1109/TAAI57707.2022.00021","DOIUrl":null,"url":null,"abstract":"As the issue of water shortage is increasing nowadays due to climate change, water consumption monitoring has become more critical in home automation services in recent years. In order to lower water bills, residents need to adjust their water usage behaviors to reduce their water consumption, highlighting the importance of the water behavior disaggregation task. However, existing works may fail to precisely disaggregate behaviors when anomaly data exists in received water data since they usually assume it is a clean dataset. In order to deal with this issue, we propose a two-phase framework to online disaggregate water usage behaviors in consideration of the occurrence of water anomaly data. A density-based clustering and different pretrained classification models are combined to detect anomalies efficiently and effectively recognize different usage behaviors. As studied on the real-world dataset, we demonstrate that the proposed framework can achieve good performance on datasets with or without anomalies.","PeriodicalId":111620,"journal":{"name":"2022 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI57707.2022.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As the issue of water shortage is increasing nowadays due to climate change, water consumption monitoring has become more critical in home automation services in recent years. In order to lower water bills, residents need to adjust their water usage behaviors to reduce their water consumption, highlighting the importance of the water behavior disaggregation task. However, existing works may fail to precisely disaggregate behaviors when anomaly data exists in received water data since they usually assume it is a clean dataset. In order to deal with this issue, we propose a two-phase framework to online disaggregate water usage behaviors in consideration of the occurrence of water anomaly data. A density-based clustering and different pretrained classification models are combined to detect anomalies efficiently and effectively recognize different usage behaviors. As studied on the real-world dataset, we demonstrate that the proposed framework can achieve good performance on datasets with or without anomalies.
异常干扰下居民家庭用水在线监测
近年来,由于气候变化导致的水资源短缺问题日益严重,用水量监测在家庭自动化服务中变得越来越重要。为了降低水费,居民需要调整用水行为以减少用水量,这凸显了用水行为分解任务的重要性。然而,当接收到的水数据中存在异常数据时,现有的工作通常假设它是一个干净的数据集,因此可能无法精确地分解行为。为了解决这一问题,我们提出了一个考虑到水异常数据发生的两阶段框架来在线分解用水行为。将基于密度的聚类和不同的预训练分类模型相结合,有效地检测异常,有效地识别不同的使用行为。通过对真实数据集的研究,我们证明了所提出的框架在有或没有异常的数据集上都能取得良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信