SemEval-2022 Task 7: Identifying Plausible Clarifications of Implicit and Underspecified Phrases in Instructional Texts

Michael Roth, Talita Anthonio, Anna Sauer
{"title":"SemEval-2022 Task 7: Identifying Plausible Clarifications of Implicit and Underspecified Phrases in Instructional Texts","authors":"Michael Roth, Talita Anthonio, Anna Sauer","doi":"10.18653/v1/2022.semeval-1.146","DOIUrl":null,"url":null,"abstract":"We describe SemEval-2022 Task 7, a shared task on rating the plausibility of clarifications in instructional texts. The dataset for this task consists of manually clarified how-to guides for which we generated alternative clarifications and collected human plausibility judgements. The task of participating systems was to automatically determine the plausibility of a clarification in the respective context. In total, 21 participants took part in this task, with the best system achieving an accuracy of 68.9%. This report summarizes the results and findings from 8 teams and their system descriptions. Finally, we show in an additional evaluation that predictions by the top participating team make it possible to identify contexts with multiple plausible clarifications with an accuracy of 75.2%.","PeriodicalId":444285,"journal":{"name":"International Workshop on Semantic Evaluation","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Semantic Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.semeval-1.146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We describe SemEval-2022 Task 7, a shared task on rating the plausibility of clarifications in instructional texts. The dataset for this task consists of manually clarified how-to guides for which we generated alternative clarifications and collected human plausibility judgements. The task of participating systems was to automatically determine the plausibility of a clarification in the respective context. In total, 21 participants took part in this task, with the best system achieving an accuracy of 68.9%. This report summarizes the results and findings from 8 teams and their system descriptions. Finally, we show in an additional evaluation that predictions by the top participating team make it possible to identify contexts with multiple plausible clarifications with an accuracy of 75.2%.
任务7:识别教学文本中隐含和未明确短语的合理解释
我们描述了SemEval-2022任务7,这是一个评估教学文本中澄清的合理性的共享任务。此任务的数据集由手动澄清的操作指南组成,我们为此生成了替代澄清并收集了人类的合理性判断。各参与系统的任务是在各自的情况下自动确定澄清的合理性。总共有21名参与者参加了这项任务,最好的系统达到了68.9%的准确率。本报告总结了来自8个团队的结果和发现以及他们的系统描述。最后,我们在一项额外的评估中表明,顶级参与团队的预测使识别具有多种合理解释的上下文成为可能,准确率为75.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信