An Improved Particle Swarm Optimization Algorithm and its Convergence Analysis

Shujun Liang, Shengli Song, Li Kong, Jingjing Cheng
{"title":"An Improved Particle Swarm Optimization Algorithm and its Convergence Analysis","authors":"Shujun Liang, Shengli Song, Li Kong, Jingjing Cheng","doi":"10.1109/ICCMS.2010.316","DOIUrl":null,"url":null,"abstract":"To avoid falling into local optimum solution and improve global optimum efficiency and accuracy of particle swarm optimization, a novel particle swarm optimization model with centroid of population is proposed, which can enhance inter-particle cooperation and information sharing capabilities effectively, then the guidelines of parameter selection are obtained in the case of convergence of the new model. Simulation results of Benchmark functions are also analyzed in detail, and show the new algorithm is more feasible and efficient then standard particle swarm optimization method.","PeriodicalId":153175,"journal":{"name":"2010 Second International Conference on Computer Modeling and Simulation","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMS.2010.316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

To avoid falling into local optimum solution and improve global optimum efficiency and accuracy of particle swarm optimization, a novel particle swarm optimization model with centroid of population is proposed, which can enhance inter-particle cooperation and information sharing capabilities effectively, then the guidelines of parameter selection are obtained in the case of convergence of the new model. Simulation results of Benchmark functions are also analyzed in detail, and show the new algorithm is more feasible and efficient then standard particle swarm optimization method.
一种改进的粒子群算法及其收敛性分析
为了避免陷入局部最优解,提高粒子群优化的全局最优效率和精度,提出了一种具有种群质心的粒子群优化模型,该模型能有效增强粒子间的协作和信息共享能力,并在模型收敛的情况下给出了参数选择的准则。对基准函数的仿真结果进行了详细分析,结果表明该算法比标准粒子群优化方法更可行、更高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信