Singular spectrum analysis for gait patterns

D. Jarchi, Guang-Zhong Yang
{"title":"Singular spectrum analysis for gait patterns","authors":"D. Jarchi, Guang-Zhong Yang","doi":"10.1109/BSN.2013.6575492","DOIUrl":null,"url":null,"abstract":"This paper proposes a new approach to gait pattern analysis based on acceleration signals during different walking conditions. Instead of applying traditional classification techniques, the proposed method looks into the characteristics of acceleration signals. Filtering and template matching methods based on singular spectrum analysis (SSA) and longest common subsequence algorithm (LCSS) have been used. The method has been used to discriminate walking downstairs, level walking and walking upstairs using 10 healthy subjects. The results suggest that the proposed method gives new insight into quantitative aspects of gait patterns.","PeriodicalId":138242,"journal":{"name":"2013 IEEE International Conference on Body Sensor Networks","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2013.6575492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper proposes a new approach to gait pattern analysis based on acceleration signals during different walking conditions. Instead of applying traditional classification techniques, the proposed method looks into the characteristics of acceleration signals. Filtering and template matching methods based on singular spectrum analysis (SSA) and longest common subsequence algorithm (LCSS) have been used. The method has been used to discriminate walking downstairs, level walking and walking upstairs using 10 healthy subjects. The results suggest that the proposed method gives new insight into quantitative aspects of gait patterns.
步态模式奇异谱分析
提出了一种基于不同行走状态下加速度信号的步态模式分析方法。与传统的分类方法不同,该方法着眼于加速度信号的特征。采用了基于奇异谱分析(SSA)和最长公共子序列算法(LCSS)的滤波和模板匹配方法。采用该方法对10名健康受试者进行了下楼行走、水平行走和上楼行走的区分。结果表明,所提出的方法为步态模式的定量方面提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信