PROPERTIES OF MEASURES ON ”STABLE” BOOLEAN ALGEBRAS

M. Svistula, T. Sribnaya
{"title":"PROPERTIES OF MEASURES ON ”STABLE” BOOLEAN ALGEBRAS","authors":"M. Svistula, T. Sribnaya","doi":"10.18287/2541-7525-2022-28-1-2-7-22","DOIUrl":null,"url":null,"abstract":"We study the properties of finitely additive measures with values in a topological abelian group and defined on a wide class of Boolean algebras, which covers algebras with SIP and algebras ???? ( if satisfies some conditions). We establish sufficient conditions for the sequences of such measures to be uniformly strongly continuous. Novelty in this theme is that we do not require uniform exhaustivity and, in some theorems, even exhaustivity for measures. Applications to weak convergence of measures are presented.","PeriodicalId":427884,"journal":{"name":"Vestnik of Samara University. Natural Science Series","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik of Samara University. Natural Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/2541-7525-2022-28-1-2-7-22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the properties of finitely additive measures with values in a topological abelian group and defined on a wide class of Boolean algebras, which covers algebras with SIP and algebras ???? ( if satisfies some conditions). We establish sufficient conditions for the sequences of such measures to be uniformly strongly continuous. Novelty in this theme is that we do not require uniform exhaustivity and, in some theorems, even exhaustivity for measures. Applications to weak convergence of measures are presented.
稳定布尔代数上测度的性质
研究了一类布尔代数上的拓扑阿贝尔群上的有限加性测度的性质,这类布尔代数包括SIP代数和????代数(如果满足某些条件)。我们建立了这些测度序列一致强连续的充分条件。这个主题的新颖之处在于,我们不需要一致的穷尽性,在某些定理中,甚至不需要度量的穷尽性。给出了测度弱收敛的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信