Prediction of knee angle from accelerometer data for microcontroller implementation of semi-active knee prosthesis

O. T. Altinoz, A. Yilmaz
{"title":"Prediction of knee angle from accelerometer data for microcontroller implementation of semi-active knee prosthesis","authors":"O. T. Altinoz, A. Yilmaz","doi":"10.1109/BIYOMUT.2010.5479762","DOIUrl":null,"url":null,"abstract":"In this study, the gait phase determination from accelerometer data is discussed for semi-active leg prosthesis for microcontroller implementation. The gait phase prediction is aimed by using knee angle obtained from the image of walking subject and accelerometer data recorded synchronously in the laboratory. For the phase determination of a gait, an artificial neural network is used because of its adaptive features for variable path and user. The accelerometer and knee angle data are prepared for the training and the testing set of the artificial neural network. The applicable network structure to be used in microcontroller based artificial knee is investigated and their performances are tested in terms of the the number of neurons and data window size.","PeriodicalId":180275,"journal":{"name":"2010 15th National Biomedical Engineering Meeting","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th National Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIYOMUT.2010.5479762","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this study, the gait phase determination from accelerometer data is discussed for semi-active leg prosthesis for microcontroller implementation. The gait phase prediction is aimed by using knee angle obtained from the image of walking subject and accelerometer data recorded synchronously in the laboratory. For the phase determination of a gait, an artificial neural network is used because of its adaptive features for variable path and user. The accelerometer and knee angle data are prepared for the training and the testing set of the artificial neural network. The applicable network structure to be used in microcontroller based artificial knee is investigated and their performances are tested in terms of the the number of neurons and data window size.
利用加速度计数据预测膝关节角度的微控制器实现半主动膝关节假体
在本研究中,讨论了基于加速度计数据的半主动假肢步态相位确定的微控制器实现。利用实验室同步记录的加速度计数据和行走对象图像获取的膝关节角度进行步态相位预测。对于步态的相位确定,利用了人工神经网络对可变路径和用户的自适应特性。为人工神经网络的训练和测试集准备加速度计和膝关节角度数据。研究了适用于单片机人工膝关节的网络结构,并从神经元数量和数据窗口大小两方面对其性能进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信