An Optimal Algorithm for Online Non-Convex Learning

L. Yang, Lei Deng, M. Hajiesmaili, Cheng Tan, W. Wong
{"title":"An Optimal Algorithm for Online Non-Convex Learning","authors":"L. Yang, Lei Deng, M. Hajiesmaili, Cheng Tan, W. Wong","doi":"10.1145/3219617.3219635","DOIUrl":null,"url":null,"abstract":"In many online learning paradigms, convexity plays a central role in the derivation and analysis of online learning algorithms. The results, however, fail to be extended to the non-convex settings, which are necessitated by tons of recent applications. The Online Non-Convex Learning problem generalizes the classic Online Convex Optimization framework by relaxing the convexity assumption on the cost function (to a Lipschitz continuous function) and the decision set. The state-of-the-art result for ønco demonstrates that the classic Hedge algorithm attains a sublinear regret of O(√T log T). The regret lower bound for øco, however, is Omega(√T), and to the best of our knowledge, there is no result in the context of the ønco problem achieving the same bound. This paper proposes the Online Recursive Weighting algorithm with regret of O(√T), matching the tight regret lower bound for the øco problem, and fills the regret gap between the state-of-the-art results in the online convex and non-convex optimization problems.","PeriodicalId":210440,"journal":{"name":"Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3219617.3219635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

In many online learning paradigms, convexity plays a central role in the derivation and analysis of online learning algorithms. The results, however, fail to be extended to the non-convex settings, which are necessitated by tons of recent applications. The Online Non-Convex Learning problem generalizes the classic Online Convex Optimization framework by relaxing the convexity assumption on the cost function (to a Lipschitz continuous function) and the decision set. The state-of-the-art result for ønco demonstrates that the classic Hedge algorithm attains a sublinear regret of O(√T log T). The regret lower bound for øco, however, is Omega(√T), and to the best of our knowledge, there is no result in the context of the ønco problem achieving the same bound. This paper proposes the Online Recursive Weighting algorithm with regret of O(√T), matching the tight regret lower bound for the øco problem, and fills the regret gap between the state-of-the-art results in the online convex and non-convex optimization problems.
一种在线非凸学习的最优算法
在许多在线学习范式中,凸性在在线学习算法的推导和分析中起着核心作用。然而,结果不能扩展到非凸设置,这是最近大量应用所必需的。在线非凸学习问题将经典的在线凸优化框架进行了推广,放宽了代价函数(为Lipschitz连续函数)和决策集的凸性假设。对于ønco的最新结果表明,经典的Hedge算法获得了O(√T log T)的次线性遗憾。然而,øco的遗憾下界是Omega(√T),据我们所知,在ønco问题的上下文中没有结果达到相同的边界。本文提出了后悔度为O(√T)的在线递归加权算法,匹配了øco问题的严格后悔下界,填补了在线凸优化问题和非凸优化问题的最新结果之间的遗憾差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信