Speaker Identification in Medical Simulation Data Using Fisher Vector Representation

Shuangshuang Jiang, H. Frigui, A. Calhoun
{"title":"Speaker Identification in Medical Simulation Data Using Fisher Vector Representation","authors":"Shuangshuang Jiang, H. Frigui, A. Calhoun","doi":"10.1109/ICMLA.2015.187","DOIUrl":null,"url":null,"abstract":"We present a robust speaker identification algorithm that uses effective features based on Fisher Vector (FV) representations. First, low-level spectral features are extracted from the training data. Next, we model the data (in the spectral feature space) by a mixture of Gaussian components. Then, we construct FV descriptors based on the deviation of the features from the Gaussian components. We analyze the FV feature representations on speech data with two common classifiers: K-nearest neighbor classifier (KNN) and support vector machines (SVM). The proposed approach is evaluated using audio data sets recorded to simulate medical crises. We show that the proposed FV feature representation approach achieves a significant improvement when compared to the state-of-art methods.","PeriodicalId":288427,"journal":{"name":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2015.187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a robust speaker identification algorithm that uses effective features based on Fisher Vector (FV) representations. First, low-level spectral features are extracted from the training data. Next, we model the data (in the spectral feature space) by a mixture of Gaussian components. Then, we construct FV descriptors based on the deviation of the features from the Gaussian components. We analyze the FV feature representations on speech data with two common classifiers: K-nearest neighbor classifier (KNN) and support vector machines (SVM). The proposed approach is evaluated using audio data sets recorded to simulate medical crises. We show that the proposed FV feature representation approach achieves a significant improvement when compared to the state-of-art methods.
基于Fisher向量表示的医学模拟数据说话人识别
我们提出了一种鲁棒的说话人识别算法,该算法使用基于Fisher向量(FV)表示的有效特征。首先,从训练数据中提取低能级光谱特征;接下来,我们通过混合高斯分量对数据(在光谱特征空间中)建模。然后,我们根据特征与高斯分量的偏差构造FV描述子。我们使用两种常用的分类器:k -最近邻分类器(KNN)和支持向量机(SVM)来分析语音数据的FV特征表示。利用模拟医疗危机记录的音频数据集对所提出的方法进行了评估。我们表明,与最先进的方法相比,所提出的FV特征表示方法取得了显着的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信