Inner geometry of complex surfaces: a valuative approach

André Belotto da Silva, Lorenzo Fantini, A. Pichon
{"title":"Inner geometry of complex surfaces: a valuative approach","authors":"André Belotto da Silva, Lorenzo Fantini, A. Pichon","doi":"10.2140/gt.2022.26.163","DOIUrl":null,"url":null,"abstract":"Given a complex analytic germ (X, 0) in (C n , 0), the standard Hermitian metric of C n induces a natural arc-length metric on (X, 0), called the inner metric. We study the inner metric structure of the germ of an isolated complex surface singularity (X, 0) by means of an infinite family of numerical analytic invariants, called inner rates. Our main result is a formula for the Laplacian of the inner rate function on a space of valuations, the non-archimedean link of (X, 0). We deduce in particular that the global data consisting of the topology of (X, 0), together with the configuration of a generic hyperplane section and of the polar curve of a generic plane projection of (X, 0), completely determine all the inner rates on (X, 0), and hence the local metric structure of the germ. Several other applications of our formula are discussed in the paper.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2022.26.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Given a complex analytic germ (X, 0) in (C n , 0), the standard Hermitian metric of C n induces a natural arc-length metric on (X, 0), called the inner metric. We study the inner metric structure of the germ of an isolated complex surface singularity (X, 0) by means of an infinite family of numerical analytic invariants, called inner rates. Our main result is a formula for the Laplacian of the inner rate function on a space of valuations, the non-archimedean link of (X, 0). We deduce in particular that the global data consisting of the topology of (X, 0), together with the configuration of a generic hyperplane section and of the polar curve of a generic plane projection of (X, 0), completely determine all the inner rates on (X, 0), and hence the local metric structure of the germ. Several other applications of our formula are discussed in the paper.
复杂曲面的内几何:一种有价值的方法
给定(cn, 0)中的一个复解析元(X, 0), cn的标准厄米度规在(X, 0)上推导出一个自然弧长度规,称为内度规。利用称为内速率的无穷一族数值解析不变量,研究了孤立复曲面奇点(X, 0)的芽的内度量结构。我们的主要结果是一个公式内率函数的拉普拉斯算子空间估值,(X, 0)的非阿基米德链接。我们特别演绎,全球数据组成的(X, 0)的拓扑结构,与一般的超平面部分的配置和通用飞机极曲线的投影(X, 0),完全确定所有内部利率(X, 0),因此当地的微生物的指标结构。本文还讨论了该公式的其他几种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信