Investigations on contrast functions for blind source separation based on non-Gaussianity and sparsity measures

M. Sahmoudi, K. Abed-Meraim
{"title":"Investigations on contrast functions for blind source separation based on non-Gaussianity and sparsity measures","authors":"M. Sahmoudi, K. Abed-Meraim","doi":"10.1109/ISSPA.2005.1580976","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a systematic method to construct contrast functions through the use of sub- or super- additive functionals. The used sub- or super-additive functionals are applied to the distributions of the extracted sources to quantify the degree of non-Gaussianity or sparsity. In this work, we assume a completely blind scenario where one knows only the observations and the existence of at most one Gaussian independent component in the mixture. However, there is no a priori information about the mixing matrix nor about the source density. Some practical examples of useful contrast functions are introduced and discussed in order to illustrate the usefulness of the proposed approach.","PeriodicalId":385337,"journal":{"name":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth International Symposium on Signal Processing and Its Applications, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPA.2005.1580976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we provide a systematic method to construct contrast functions through the use of sub- or super- additive functionals. The used sub- or super-additive functionals are applied to the distributions of the extracted sources to quantify the degree of non-Gaussianity or sparsity. In this work, we assume a completely blind scenario where one knows only the observations and the existence of at most one Gaussian independent component in the mixture. However, there is no a priori information about the mixing matrix nor about the source density. Some practical examples of useful contrast functions are introduced and discussed in order to illustrate the usefulness of the proposed approach.
基于非高斯和稀疏度测度的盲源分离对比函数研究
在本文中,我们提供了一个系统的方法来构造对比函数通过使用子或超加性泛函。将所使用的亚加性或超加性泛函应用于提取源的分布,以量化非高斯性或稀疏性的程度。在这项工作中,我们假设一个完全盲目的场景,人们只知道观察结果,并且混合物中最多存在一个高斯独立分量。然而,没有关于混合矩阵的先验信息,也没有关于源密度的先验信息。为了说明所提出的方法的有效性,介绍并讨论了一些有用的对比函数的实际例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信