Fingerprinting and Building Large Reproducible Datasets

Romain Lefeuvre, Jessie Galasso, B. Combemale, H. Sahraoui, Stefano Zacchiroli
{"title":"Fingerprinting and Building Large Reproducible Datasets","authors":"Romain Lefeuvre, Jessie Galasso, B. Combemale, H. Sahraoui, Stefano Zacchiroli","doi":"10.1145/3589806.3600043","DOIUrl":null,"url":null,"abstract":"Obtaining a relevant dataset is central to conducting empirical studies in software engineering. However, in the context of mining software repositories, the lack of appropriate tooling for large scale mining tasks hinders the creation of new datasets. Moreover, limitations related to data sources that change over time (e.g., code bases) and the lack of documentation of extraction processes make it difficult to reproduce datasets over time. This threatens the quality and reproducibility of empirical studies. In this paper, we propose a tool-supported approach facilitating the creation of large tailored datasets while ensuring their reproducibility. We leveraged all the sources feeding the Software Heritage append-only archive which are accessible through a unified programming interface to outline a reproducible and generic extraction process. We propose a way to define a unique fingerprint to characterize a dataset which, when provided to the extraction process, ensures that the same dataset will be extracted. We demonstrate the feasibility of our approach by implementing a prototype. We show how it can help reduce the limitations researchers face when creating or reproducing datasets.","PeriodicalId":393751,"journal":{"name":"Proceedings of the 2023 ACM Conference on Reproducibility and Replicability","volume":"242 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2023 ACM Conference on Reproducibility and Replicability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3589806.3600043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Obtaining a relevant dataset is central to conducting empirical studies in software engineering. However, in the context of mining software repositories, the lack of appropriate tooling for large scale mining tasks hinders the creation of new datasets. Moreover, limitations related to data sources that change over time (e.g., code bases) and the lack of documentation of extraction processes make it difficult to reproduce datasets over time. This threatens the quality and reproducibility of empirical studies. In this paper, we propose a tool-supported approach facilitating the creation of large tailored datasets while ensuring their reproducibility. We leveraged all the sources feeding the Software Heritage append-only archive which are accessible through a unified programming interface to outline a reproducible and generic extraction process. We propose a way to define a unique fingerprint to characterize a dataset which, when provided to the extraction process, ensures that the same dataset will be extracted. We demonstrate the feasibility of our approach by implementing a prototype. We show how it can help reduce the limitations researchers face when creating or reproducing datasets.
指纹识别和构建大型可重复数据集
获取相关数据集是进行软件工程实证研究的核心。然而,在挖掘软件存储库的背景下,缺乏适合大规模挖掘任务的工具阻碍了新数据集的创建。此外,与随时间变化的数据源(例如代码库)相关的限制以及缺乏提取过程的文档使得很难随时间重现数据集。这威胁到实证研究的质量和可重复性。在本文中,我们提出了一种工具支持的方法,促进了大型定制数据集的创建,同时确保了它们的可重复性。我们利用了所有提供给Software Heritage的源文件,这些文件可以通过一个统一的编程接口访问,从而勾勒出一个可重复的和通用的提取过程。我们提出了一种定义唯一指纹来描述数据集的方法,当提供给提取过程时,可以确保提取相同的数据集。我们通过实现一个原型来证明我们的方法的可行性。我们展示了它如何帮助减少研究人员在创建或复制数据集时面临的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信