Low-Rank Representation Based Domain Adaptation for Classification of Remote Sensing Images

Wen Wang, Li Ma
{"title":"Low-Rank Representation Based Domain Adaptation for Classification of Remote Sensing Images","authors":"Wen Wang, Li Ma","doi":"10.1109/Multi-Temp.2019.8866935","DOIUrl":null,"url":null,"abstract":"A low-rank representation (LRR) based domain adaptation method is proposed for classification of remote sensing images. LRR achieves domain adaptation by constraining one domain can be well reconstructed by the other domain. In this paper, source data are transformed to target domain so that the transformed source domain data can be linearly reconstructed by the data of target domain. The domain distribution difference can be reduced by constraining the reconstruction matrix to be low rank. Further, we introduced a per-class maximum mean discrepancy (MMD) strategy to obtain an improved cross-domain alignment performance. The experimental results using hyperspectral remote sensing images demonstrated the effectiveness of the proposed method.","PeriodicalId":106790,"journal":{"name":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Multi-Temp.2019.8866935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A low-rank representation (LRR) based domain adaptation method is proposed for classification of remote sensing images. LRR achieves domain adaptation by constraining one domain can be well reconstructed by the other domain. In this paper, source data are transformed to target domain so that the transformed source domain data can be linearly reconstructed by the data of target domain. The domain distribution difference can be reduced by constraining the reconstruction matrix to be low rank. Further, we introduced a per-class maximum mean discrepancy (MMD) strategy to obtain an improved cross-domain alignment performance. The experimental results using hyperspectral remote sensing images demonstrated the effectiveness of the proposed method.
基于低秩表示的遥感图像领域自适应分类
提出了一种基于低秩表示(LRR)的区域自适应遥感图像分类方法。LRR通过约束一个域可以被另一个域很好地重构来实现域自适应。本文将源数据转换到目标域,使转换后的源域数据可以用目标域数据进行线性重构。通过将重构矩阵约束为低秩,可以减小域分布差。此外,我们引入了每类最大平均差异(MMD)策略来获得改进的跨域对齐性能。高光谱遥感图像的实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信