Optimal feature retrieval for classification of non-stationary Power Quality disturbances

V. Pandi, S. Sinha, A. Mohapatra, B. K. Panigrahi, Swagatam Das
{"title":"Optimal feature retrieval for classification of non-stationary Power Quality disturbances","authors":"V. Pandi, S. Sinha, A. Mohapatra, B. K. Panigrahi, Swagatam Das","doi":"10.1504/IJAISC.2010.038640","DOIUrl":null,"url":null,"abstract":"Since last few decades, Power Quality (PQ) issues has drawn the attention of both the utilities and the customers. This paper presents one of the most advanced signal-processing techniques i.e., Wavelet Transform (WT) to extract some of the important useful features of the non-stationary PQ signal. The features are then used to classify the nature of the PQ disturbance. The feature dimension is further reduced by selecting the optimal set of features using Genetic Algorithm (GA) to achieve a higher classification accuracy. The optimal features obtained using GA are used to train a Support Vector Machine (SVM) classifier for automatic classification of the Power Quality (PQ) disturbances. Nine types of PQ disturbances are considered for the classification purpose. The simulation results show that the combination of WT and SVM can effectively classify different PQ disturbances.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"1991 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2010.038640","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since last few decades, Power Quality (PQ) issues has drawn the attention of both the utilities and the customers. This paper presents one of the most advanced signal-processing techniques i.e., Wavelet Transform (WT) to extract some of the important useful features of the non-stationary PQ signal. The features are then used to classify the nature of the PQ disturbance. The feature dimension is further reduced by selecting the optimal set of features using Genetic Algorithm (GA) to achieve a higher classification accuracy. The optimal features obtained using GA are used to train a Support Vector Machine (SVM) classifier for automatic classification of the Power Quality (PQ) disturbances. Nine types of PQ disturbances are considered for the classification purpose. The simulation results show that the combination of WT and SVM can effectively classify different PQ disturbances.
非平稳电能质量扰动分类的最优特征检索
近几十年来,电能质量问题引起了电力公司和用户的广泛关注。本文提出了一种最先进的信号处理技术,即小波变换(WT)来提取非平稳PQ信号的一些重要有用的特征。然后使用这些特征对PQ扰动的性质进行分类。利用遗传算法(GA)选择最优特征集,进一步降低特征维数,达到更高的分类精度。利用遗传算法得到的最优特征,训练支持向量机分类器对电能质量干扰进行自动分类。九种类型的PQ干扰被考虑用于分类目的。仿真结果表明,小波变换与支持向量机的结合可以有效地对不同的PQ干扰进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信